Spaces:
Runtime error
Runtime error
File size: 4,579 Bytes
140793a 0b15f14 140793a 0b15f14 140793a 0b15f14 140793a fca63f5 0b15f14 140793a 713065f 140793a 713065f 140793a 83a6345 140793a 83a6345 140793a 83a6345 140793a 83a6345 140793a 0b15f14 140793a 0b15f14 1408800 140793a 1408800 736d538 1408800 140793a 2c2fdca 1408800 140793a 713065f d1590ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import json
import os
import shutil
import requests
import gradio as gr
from huggingface_hub import Repository, InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat"
BOT_NAME = "Falcon"
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"]
EXAMPLES = [
["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"],
["What's the Everett interpretation of quantum mechanics?"],
["Give me a list of the top 10 dive sites you would recommend around the world."],
["Can you tell me more about deep-water soloing?"],
["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"]
]
client = InferenceClient(
API_URL,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
################### mY code ############################
def generate_headlines(topic):
prompt = f"Create at most 5 headlines that highlight {topic}. The headlines should be concise, attention-grabbing, and suitable for use in a news video."
sequences = generate(
prompt,
history=[],
system_prompt="",
temperature=0.9,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1.0,
)
headlines = [seq for seq in sequences]
return "\n".join(headlines)
######################################################
def format_prompt(message, history, system_prompt):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
prompt += f"""User: {message}
Falcon:"""
return prompt
seed = 42
def generate(
prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
global seed
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_sequences=STOP_SEQUENCES,
do_sample=True,
seed=seed,
)
seed = seed + 1
formatted_prompt = format_prompt(prompt, history, system_prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
for stop_str in STOP_SEQUENCES:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.rstrip()
yield output
yield output
return output
additional_inputs=[
gr.Textbox("", label="Optional system prompt"),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
iface_1 = gr.Interface(
fn=generate_headlines,
inputs=gr.components.Textbox(placeholder="Enter the topic"),
outputs="text",
examples=EXAMPLES
)
main_i = gr.ChatInterface(
generate,
examples=EXAMPLES,
additional_inputs=additional_inputs,
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4): # Adjusted the 'scale' parameter to be an integer
gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False)
with gr.Column(scale=6):
gr.Markdown(
"""# Falcon-180B Demo
... [rest of the markdown content] ...
"""
)
demo = gr.TabbedInterface([iface_1, main_i], ["Get headlines", "Chatbot Demo"])
demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)
|