|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, ViTImageProcessor, VisionEncoderDecoderModel |
|
|
|
device = 'cpu' |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("premanthcharan/Image_Captioning_Model").to(device) |
|
feature_extractor = ViTImageProcessor.from_pretrained("premanthcharan/Image_Captioning_Model") |
|
tokenizer = AutoTokenizer.from_pretrained("premanthcharan/Image_Captioning_Model") |
|
|
|
def predict(image, max_length=64, num_beams=4): |
|
|
|
image = image.convert('RGB') |
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) |
|
|
|
|
|
caption_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)[0] |
|
|
|
|
|
caption = tokenizer.decode(caption_ids, skip_special_tokens=True) |
|
return caption |
|
|
|
css = ''' |
|
h1#title { |
|
text-align: center; |
|
} |
|
h3#header { |
|
text-align: center; |
|
} |
|
img#overview { |
|
max-width: 800px; |
|
max-height: 600px; |
|
} |
|
img#style-image { |
|
max-width: 1000px; |
|
max-height: 600px; |
|
} |
|
''' |
|
|
|
demo = gr.Blocks(css=css) |
|
|
|
with demo: |
|
gr.Markdown('''<h1 id="title">Automated Image Captioning Using Generative AI: A Transformer based approach 🖼️</h1>''') |
|
gr.Markdown('Contributed by : Charan Gudivada, Premanth Alahari') |
|
|
|
with gr.Column(): |
|
input_image = gr.Image(label="Upload your Image", type='pil') |
|
output_caption = gr.Textbox(label="Generated Caption") |
|
|
|
btn = gr.Button("Generate Caption") |
|
btn.click(fn=predict, inputs=input_image, outputs=output_caption) |
|
|
|
with demo: |
|
gr.Markdown('''<h1 id="title">Features:</h1>''') |
|
gr.Markdown("1. Drop the Image Here or Click on Upload\n2. Click to Access Webcam\n3. Paste from Clipboard") |
|
demo.launch() |