import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer from qwen_vl_utils import process_vision_info import torch from PIL import Image import os import uuid import io from threading import Thread from reportlab.lib.pagesizes import A4 from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib import colors from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer from reportlab.lib.units import inch from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import docx from docx.enum.text import WD_ALIGN_PARAGRAPH # Define model options MODEL_OPTIONS = { "Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct", "Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", "Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct", "Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct" } # Preload models and processors into CUDA models = {} processors = {} for name, model_id in MODEL_OPTIONS.items(): print(f"Loading {name}...") models[name] = Qwen2VLForConditionalGeneration.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) image_extensions = Image.registered_extensions() def identify_and_save_blob(blob_path): """Identifies if the blob is an image and saves it.""" try: with open(blob_path, 'rb') as file: blob_content = file.read() try: Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image extension = ".png" # Default to PNG for saving media_type = "image" except (IOError, SyntaxError): raise ValueError("Unsupported media type. Please upload a valid image.") filename = f"temp_{uuid.uuid4()}_media{extension}" with open(filename, "wb") as f: f.write(blob_content) return filename, media_type except FileNotFoundError: raise ValueError(f"The file {blob_path} was not found.") except Exception as e: raise ValueError(f"An error occurred while processing the file: {e}") @spaces.GPU def qwen_inference(model_name, media_input, text_input=None): """Handles inference for the selected model.""" model = models[model_name] processor = processors[model_name] if isinstance(media_input, str): media_path = media_input if media_path.endswith(tuple([i for i in image_extensions.keys()])): media_type = "image" else: try: media_path, media_type = identify_and_save_blob(media_input) except Exception as e: raise ValueError("Unsupported media type. Please upload a valid image.") messages = [ { "role": "user", "content": [ { "type": media_type, media_type: media_path }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, padding=True, return_tensors="pt", ).to("cuda") streamer = TextIteratorStreamer( processor.tokenizer, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer def format_plain_text(output_text): """Formats the output text as plain text without LaTeX delimiters.""" # Remove LaTeX delimiters and convert to plain text plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "") return plain_text def generate_document(media_path, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size): """Generates a document with the input image and plain text output.""" plain_text = format_plain_text(output_text) if file_format == "pdf": return generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size) elif file_format == "docx": return generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size) def generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size): """Generates a PDF document.""" filename = f"output_{uuid.uuid4()}.pdf" doc = SimpleDocTemplate( filename, pagesize=A4, rightMargin=inch, leftMargin=inch, topMargin=inch, bottomMargin=inch ) styles = getSampleStyleSheet() styles["Normal"].fontName = font_choice styles["Normal"].fontSize = int(font_size) styles["Normal"].leading = int(font_size) * line_spacing styles["Normal"].alignment = { "Left": 0, "Center": 1, "Right": 2, "Justified": 4 }[alignment] # Register font font_path = f"font/{font_choice}" pdfmetrics.registerFont(TTFont(font_choice, font_path)) story = [] # Add image with size adjustment image_sizes = { "Small": (200, 200), "Medium": (400, 400), "Large": (600, 600) } img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1]) story.append(img) story.append(Spacer(1, 12)) # Add plain text output text = Paragraph(plain_text, styles["Normal"]) story.append(text) doc.build(story) return filename def generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size): """Generates a DOCX document.""" filename = f"output_{uuid.uuid4()}.docx" doc = docx.Document() # Add image with size adjustment image_sizes = { "Small": docx.shared.Inches(2), "Medium": docx.shared.Inches(4), "Large": docx.shared.Inches(6) } doc.add_picture(media_path, width=image_sizes[image_size]) doc.add_paragraph() # Add plain text output paragraph = doc.add_paragraph() paragraph.paragraph_format.line_spacing = line_spacing paragraph.paragraph_format.alignment = { "Left": WD_ALIGN_PARAGRAPH.LEFT, "Center": WD_ALIGN_PARAGRAPH.CENTER, "Right": WD_ALIGN_PARAGRAPH.RIGHT, "Justified": WD_ALIGN_PARAGRAPH.JUSTIFY }[alignment] run = paragraph.add_run(plain_text) run.font.name = font_choice run.font.size = docx.shared.Pt(int(font_size)) doc.save(filename) return filename # CSS for output styling css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } .submit-btn { background-color: #cf3434 !important; color: white !important; } .submit-btn:hover { background-color: #ff2323 !important; } .download-btn { background-color: #35a6d6 !important; color: white !important; } .download-btn:hover { background-color: #22bcff !important; } """ # Gradio app setup with gr.Blocks(css=css) as demo: gr.Markdown("# Qwen2VL Models: Vision and Language Processing") with gr.Tab(label="Image Input"): with gr.Row(): with gr.Column(): model_choice = gr.Dropdown( label="Model Selection", choices=list(MODEL_OPTIONS.keys()), value="Latex OCR" ) input_media = gr.File( label="Upload Image📸", type="filepath" ) text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") with gr.Column(): output_text = gr.Textbox(label="Output Text", lines=10) plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10) submit_btn.click( qwen_inference, [model_choice, input_media, text_input], [output_text] ).then( lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output] ) # Add examples directly usable by clicking with gr.Row(): gr.Examples( examples=[ ["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"], ["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"], ["examples/3.png", "Describe the photo", "Qwen2VL Base"], ["examples/4.png", "summarize and solve the problem", "Math Prase"], ], inputs=[input_media, text_input, model_choice], outputs=[output_text, plain_text_output], fn=lambda img, question, model: qwen_inference(model, img, question), cache_examples=False, ) with gr.Row(): with gr.Column(): line_spacing = gr.Dropdown( choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0], value=1.5, label="Line Spacing" ) font_size = gr.Dropdown( choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"], value="18", label="Font Size" ) font_choice = gr.Dropdown( choices=[ "DejaVuMathTeXGyre.ttf", "FiraCode-Medium.ttf", "InputMono-Light.ttf", "JetBrainsMono-Thin.ttf", "ProggyCrossed Regular Mac.ttf", "SourceCodePro-Black.ttf", "arial.ttf", "calibri.ttf", "mukta-malar-extralight.ttf", "noto-sans-arabic-medium.ttf", "times new roman.ttf", "ANGSA.ttf", "Book-Antiqua.ttf", "CONSOLA.TTF", "COOPBL.TTF", "Rockwell-Bold.ttf", "Candara Light.TTF", "Carlito-Regular.ttf Carlito-Regular.ttf", "Castellar.ttf", "Courier New.ttf", "LSANS.TTF", "Lucida Bright Regular.ttf", "TRTempusSansITC.ttf", "Verdana.ttf", "bell-mt.ttf", "eras-itc-light.ttf", "fonnts.com-aptos-light.ttf", "georgia.ttf", "segoeuithis.ttf", "youyuan.TTF", "TfPonetoneExpanded-7BJZA.ttf", ], value="youyuan.TTF", label="Font Choice" ) alignment = gr.Dropdown( choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment" ) image_size = gr.Dropdown( choices=["Small", "Medium", "Large"], value="Small", label="Image Size" ) file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf") get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn") get_document_btn.click( generate_document, [input_media, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document") ) demo.launch(debug=True)