import gradio as gr from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer from transformers.image_utils import load_image from threading import Thread import time import torch import spaces MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.bfloat16 ).to("cuda").eval() @spaces.GPU def model_inference(input_dict, history): text = input_dict["text"] files = input_dict["files"] # Load images if provided if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] # Validate input if text == "" and not images: gr.Error("Please input a query and optionally image(s).") return if text == "" and images: gr.Error("Please input a text query along with the image(s).") return # Prepare messages for the model messages = [ { "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ], } ] # Apply chat template and process inputs prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[prompt], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") # Set up streamer for real-time output streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) # Start generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream the output buffer = "" yield "Thinking..." for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer # Example inputs examples = [ [{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], ] demo = gr.ChatInterface( fn=model_inference, description="# **Qwen2.5-VL-3B-Instruct**", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, ) demo.launch(debug=True)