prithivMLmods commited on
Commit
d3e8957
·
verified ·
1 Parent(s): 9f0abe7
Files changed (1) hide show
  1. app.py +41 -8
app.py CHANGED
@@ -65,6 +65,15 @@ model_f = Qwen2_5_VLForConditionalGeneration.from_pretrained(
65
  torch_dtype=torch.float16
66
  ).to(device).eval()
67
 
 
 
 
 
 
 
 
 
 
68
  def downsample_video(video_path):
69
  """
70
  Downsamples the video to evenly spaced frames.
@@ -109,6 +118,9 @@ def generate_image(model_name: str, text: str, image: Image.Image,
109
  elif model_name == "olmOCR-7B-0825":
110
  processor = processor_f
111
  model = model_f
 
 
 
112
  else:
113
  yield "Invalid model selected.", "Invalid model selected."
114
  return
@@ -166,6 +178,9 @@ def generate_video(model_name: str, text: str, video_path: str,
166
  elif model_name == "olmOCR-7B-0825":
167
  processor = processor_f
168
  model = model_f
 
 
 
169
  else:
170
  yield "Invalid model selected.", "Invalid model selected."
171
  return
@@ -213,7 +228,10 @@ def generate_video(model_name: str, text: str, video_path: str,
213
 
214
  # Define examples for image and video inference
215
  image_examples = [
216
- ["Provide a detailed caption for the image..", "images/A.jpg"],
 
 
 
217
  ["Explain the pie-chart in detail.", "images/2.jpg"],
218
  ["Jsonify Data.", "images/1.jpg"],
219
  ]
@@ -241,7 +259,7 @@ css = """
241
 
242
  # Create the Gradio Interface
243
  with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
244
- gr.Markdown("# **[Qwen2.5-VL](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
245
  with gr.Row():
246
  with gr.Column():
247
  with gr.Tabs():
@@ -271,21 +289,36 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
271
  with gr.Column():
272
  with gr.Column(elem_classes="canvas-output"):
273
  gr.Markdown("## Output")
274
- output = gr.Textbox(label="Raw Output", interactive=False, lines=2, scale=2)
275
 
276
  with gr.Accordion("(Result.md)", open=False):
277
  markdown_output = gr.Markdown()
278
 
279
  model_choice = gr.Radio(
280
- choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "Qwen2.5-VL-7B-Abliterated-Caption-it", "olmOCR-7B-0825"],
281
  label="Select Model",
282
  value="Qwen2.5-VL-7B-Instruct"
283
  )
284
  gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
285
- gr.Markdown("> [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.")
286
- gr.Markdown("> [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct): Qwen2.5-VL-3B-Instruct is an instruction-tuned vision-language model from Alibaba Cloud, built upon the Qwen2-VL series. It excels at understanding and generating text related to both visual and textual inputs, making it capable of tasks like image captioning, visual question answering, and object localization. The model also supports long video understanding and structured data extraction")
287
- gr.Markdown("> [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.")
288
- gr.Markdown("> [olmOCR-7B-0825](https://huggingface.co/allenai/olmOCR-7B-0825): olmOCR-7B-0825 is a 7B parameter open large model designed for OCR tasks with robust text extraction, especially in complex document layouts. Multimodal model emphasizing strong document reading and extraction capabilities combined with vision-language understanding to support detailed document parsing tasks.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
290
 
291
  image_submit.click(
 
65
  torch_dtype=torch.float16
66
  ).to(device).eval()
67
 
68
+ # Load R-4B
69
+ MODEL_ID_Y = "YannQi/R-4B"
70
+ processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
71
+ model_y = AutoModel.from_pretrained(
72
+ MODEL_ID_Y,
73
+ trust_remote_code=True,
74
+ torch_dtype=torch.float16
75
+ ).to(device).eval()
76
+
77
  def downsample_video(video_path):
78
  """
79
  Downsamples the video to evenly spaced frames.
 
118
  elif model_name == "olmOCR-7B-0825":
119
  processor = processor_f
120
  model = model_f
121
+ elif model_name == "R-4B":
122
+ processor = processor_y
123
+ model = model_y
124
  else:
125
  yield "Invalid model selected.", "Invalid model selected."
126
  return
 
178
  elif model_name == "olmOCR-7B-0825":
179
  processor = processor_f
180
  model = model_f
181
+ elif model_name == "R-4B":
182
+ processor = processor_y
183
+ model = model_y
184
  else:
185
  yield "Invalid model selected.", "Invalid model selected."
186
  return
 
228
 
229
  # Define examples for image and video inference
230
  image_examples = [
231
+ ["Explain the content in detail.", "images/D.jpg"],
232
+ ["Explain the content (ocr).", "images/O.jpg"],
233
+ ["What is the core meaning of the poem?", "images/S.jpg"],
234
+ ["Provide a detailed caption for the image.", "images/A.jpg"],
235
  ["Explain the pie-chart in detail.", "images/2.jpg"],
236
  ["Jsonify Data.", "images/1.jpg"],
237
  ]
 
259
 
260
  # Create the Gradio Interface
261
  with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
262
+ gr.Markdown("# **[Qwen2.5-VL-Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
263
  with gr.Row():
264
  with gr.Column():
265
  with gr.Tabs():
 
289
  with gr.Column():
290
  with gr.Column(elem_classes="canvas-output"):
291
  gr.Markdown("## Output")
292
+ output = gr.Textbox(label="Raw Output", interactive=False, lines=3, scale=2)
293
 
294
  with gr.Accordion("(Result.md)", open=False):
295
  markdown_output = gr.Markdown()
296
 
297
  model_choice = gr.Radio(
298
+ choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "R-4B", "Qwen2.5-VL-7B-Abliterated-Caption-it", "olmOCR-7B-0825"],
299
  label="Select Model",
300
  value="Qwen2.5-VL-7B-Instruct"
301
  )
302
  gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
303
+
304
+ gr.Markdown(
305
+ """
306
+ > [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.
307
+ >
308
+ > [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct): Qwen2.5-VL-3B-Instruct is an instruction-tuned vision-language model from Alibaba Cloud, built upon the Qwen2-VL series. It excels at understanding and generating text related to both visual and textual inputs, making it capable of tasks like image captioning, visual question answering, and object localization. The model also supports long video understanding and structured data extraction.
309
+ """
310
+ )
311
+
312
+ gr.Markdown(
313
+ """
314
+ > [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.
315
+ >
316
+ > [olmOCR-7B-0825](https://huggingface.co/allenai/olmOCR-7B-0825): olmOCR-7B-0825 is a 7B parameter open large model designed for OCR tasks with robust text extraction, especially in complex document layouts. Multimodal model emphasizing strong document reading and extraction capabilities combined with vision-language understanding to support detailed document parsing tasks.
317
+ """
318
+ )
319
+
320
+ gr.Markdown("> [R-4B](https://huggingface.co/YannQi/R-4B): R-4B is a multimodal large language model designed for adaptive auto-thinking, able to intelligently switch between detailed reasoning and direct responses to optimize quality and efficiency. It achieves state-of-the-art performance and efficiency with user-controllable response modes, making it ideal for both simple and complex tasks.")
321
+
322
  gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
323
 
324
  image_submit.click(