File size: 9,484 Bytes
49baf5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ba041
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor

from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_quality import deepfake_classification
from gym_workout_classification import workout_classification
from augmented_waste_classifier import waste_classification
from age_classification import age_classification
from mnist_digits import classify_digit
from fashion_mnist_cloth import fashion_mnist_classification
from indian_western_food_classify import food_classification
from bird_species import bird_classification
from alphabet_sign_language_detection import sign_language_classification
from rice_leaf_disease import classify_leaf_disease
from traffic_density import traffic_density_classification
from clip_art import clipart_classification
from multisource_121 import multisource_classification
from painting_126 import painting_classification
from sketch_126 import sketch_classification  # New import

# Main classification function for multi-model classification.
def classify(image, model_name):
    if model_name == "gender":
        return gender_classification(image)
    elif model_name == "emotion":
        return emotion_classification(image)
    elif model_name == "dog breed":
        return dog_breed_classification(image)
    elif model_name == "deepfake":
        return deepfake_classification(image)
    elif model_name == "gym workout":
        return workout_classification(image)
    elif model_name == "waste":
        return waste_classification(image)
    elif model_name == "age":
        return age_classification(image)
    elif model_name == "mnist":
        return classify_digit(image)
    elif model_name == "fashion_mnist":
        return fashion_mnist_classification(image)
    elif model_name == "food":
        return food_classification(image)
    elif model_name == "bird":
        return bird_classification(image)
    elif model_name == "leaf disease":
        return classify_leaf_disease(image)
    elif model_name == "sign language":
        return sign_language_classification(image)
    elif model_name == "traffic density":
        return traffic_density_classification(image)
    elif model_name == "clip art":
        return clipart_classification(image)
    elif model_name == "multisource":
        return multisource_classification(image)
    elif model_name == "painting":
        return painting_classification(image)
    elif model_name == "sketch":  # New option
        return sketch_classification(image)
    else:
        return {"Error": "No model selected"}

# Function to update the selected model and button styles.
def select_model(model_name):
    model_variants = {
        "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
        "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
        "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
        "sign language": "secondary", "traffic density": "secondary", "clip art": "secondary",
        "multisource": "secondary", "painting": "secondary", "sketch": "secondary"  # New model variant
    }
    model_variants[model_name] = "primary"
    return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))

# Zero-Shot Classification Setup (SigLIP models)
sg1_ckpt = "google/siglip-so400m-patch14-384"
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval()
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt)

sg2_ckpt = "google/siglip2-so400m-patch14-384"
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval()
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt)

def postprocess_siglip(sg1_probs, sg2_probs, labels):
    sg1_output = {labels[i]: sg1_probs[0][i].item() for i in range(len(labels))}
    sg2_output = {labels[i]: sg2_probs[0][i].item() for i in range(len(labels))}
    return sg1_output, sg2_output

def siglip_detector(image, texts):
    sg1_inputs = siglip1_processor(
        text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
    ).to("cpu")
    sg2_inputs = siglip2_processor(
        text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
    ).to("cpu")
    with torch.no_grad():
        sg1_outputs = siglip1_model(**sg1_inputs)
        sg2_outputs = siglip2_model(**sg2_inputs)
        sg1_logits_per_image = sg1_outputs.logits_per_image
        sg2_logits_per_image = sg2_outputs.logits_per_image
        sg1_probs = torch.sigmoid(sg1_logits_per_image)
        sg2_probs = torch.sigmoid(sg2_logits_per_image)
    return sg1_probs, sg2_probs

def infer(image, candidate_labels):
    candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
    sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
    return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels)

# Build the Gradio Interface with two tabs.
with gr.Blocks() as demo:
    gr.Markdown("# Multi-Domain & Zero-Shot Image Classification")
    
    with gr.Tabs():
        # Tab 1: Multi-Model Classification
        with gr.Tab("Multi-Domain Classification"):
            with gr.Sidebar():
                gr.Markdown("# Choose Domain")
                with gr.Row():
                    age_btn = gr.Button("Age Classification", variant="primary")
                    gender_btn = gr.Button("Gender Classification", variant="secondary")
                    emotion_btn = gr.Button("Emotion Classification", variant="secondary")
                    gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
                    dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
                    bird_btn = gr.Button("Bird Species Classification", variant="secondary")
                    waste_btn = gr.Button("Waste Classification", variant="secondary")
                    deepfake_btn = gr.Button("Deepfake Quality Test", variant="secondary")
                    traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
                    sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
                    clip_art_btn = gr.Button("Clip Art 126", variant="secondary")
                    mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
                    fashion_mnist_btn = gr.Button("Fashion MNIST (only cloth)", variant="secondary")
                    food_btn = gr.Button("Indian/Western Food Type", variant="secondary")
                    leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
                    multisource_btn = gr.Button("Multi Source 121", variant="secondary")
                    painting_btn = gr.Button("Painting 126", variant="secondary")
                    sketch_btn = gr.Button("Sketch 126", variant="secondary")
                    
                selected_model = gr.State("age")
                gr.Markdown("### Current Model:")
                model_display = gr.Textbox(value="age", interactive=False)
                selected_model.change(lambda m: m, selected_model, model_display)

                buttons = [
                    gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn,
                    age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn,
                    sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn, painting_btn, sketch_btn  # Include new button
                ]
                model_names = [
                    "gender", "emotion", "dog breed", "deepfake", "gym workout", "waste",
                    "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease",
                    "sign language", "traffic density", "clip art", "multisource", "painting", "sketch"  # New model name
                ]

                for btn, name in zip(buttons, model_names):
                    btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)

            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(type="numpy", label="Upload Image")
                    analyze_btn = gr.Button("Classify / Predict")
                output_label = gr.Label(label="Prediction Scores")
                analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
        
        # Tab 2: Zero-Shot Classification (SigLIP)
        with gr.Tab("Zero-Shot Classification"):
            gr.Markdown("## Compare SigLIP 1 and SigLIP 2 on Zero-Shot Classification")
            with gr.Row():
                with gr.Column():
                    zs_image_input = gr.Image(type="pil", label="Upload Image")
                    zs_text_input = gr.Textbox(label="Input a list of labels (comma separated)")
                    zs_run_button = gr.Button("Run")
                with gr.Column():
                    siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3)
                    siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3)
            zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output])

demo.launch()