|
import gradio as gr
|
|
from transformers import AutoImageProcessor
|
|
from transformers import SiglipForImageClassification
|
|
from transformers.image_utils import load_image
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Alphabet-Sign-Language-Detection"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def sign_language_classification(image):
|
|
"""Predicts sign language alphabet category for an image."""
|
|
image = Image.fromarray(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
labels = {
|
|
"0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J",
|
|
"10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T",
|
|
"20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z"
|
|
}
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=sign_language_classification,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="Alphabet Sign Language Detection",
|
|
description="Upload an image to classify it into one of the 26 sign language alphabet categories."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch()
|
|
|