|
import gradio as gr
|
|
from transformers import AutoImageProcessor, SiglipForImageClassification
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Dog-Breed-120"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def dog_breed_classification(image):
|
|
"""Predicts the dog breed for an image."""
|
|
image = Image.fromarray(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
labels = {
|
|
"0": "affenpinscher",
|
|
"1": "afghan_hound",
|
|
"2": "african_hunting_dog",
|
|
"3": "airedale",
|
|
"4": "american_staffordshire_terrier",
|
|
"5": "appenzeller",
|
|
"6": "australian_terrier",
|
|
"7": "basenji",
|
|
"8": "basset",
|
|
"9": "beagle",
|
|
"10": "bedlington_terrier",
|
|
"11": "bernese_mountain_dog",
|
|
"12": "black-and-tan_coonhound",
|
|
"13": "blenheim_spaniel",
|
|
"14": "bloodhound",
|
|
"15": "bluetick",
|
|
"16": "border_collie",
|
|
"17": "border_terrier",
|
|
"18": "borzoi",
|
|
"19": "boston_bull",
|
|
"20": "bouvier_des_flandres",
|
|
"21": "boxer",
|
|
"22": "brabancon_griffon",
|
|
"23": "briard",
|
|
"24": "brittany_spaniel",
|
|
"25": "bull_mastiff",
|
|
"26": "cairn",
|
|
"27": "cardigan",
|
|
"28": "chesapeake_bay_retriever",
|
|
"29": "chihuahua",
|
|
"30": "chow",
|
|
"31": "clumber",
|
|
"32": "cocker_spaniel",
|
|
"33": "collie",
|
|
"34": "curly-coated_retriever",
|
|
"35": "dandie_dinmont",
|
|
"36": "dhole",
|
|
"37": "dingo",
|
|
"38": "doberman",
|
|
"39": "english_foxhound",
|
|
"40": "english_setter",
|
|
"41": "english_springer",
|
|
"42": "entlebucher",
|
|
"43": "eskimo_dog",
|
|
"44": "flat-coated_retriever",
|
|
"45": "french_bulldog",
|
|
"46": "german_shepherd",
|
|
"47": "german_short-haired_pointer",
|
|
"48": "giant_schnauzer",
|
|
"49": "golden_retriever",
|
|
"50": "gordon_setter",
|
|
"51": "great_dane",
|
|
"52": "great_pyrenees",
|
|
"53": "greater_swiss_mountain_dog",
|
|
"54": "groenendael",
|
|
"55": "ibizan_hound",
|
|
"56": "irish_setter",
|
|
"57": "irish_terrier",
|
|
"58": "irish_water_spaniel",
|
|
"59": "irish_wolfhound",
|
|
"60": "italian_greyhound",
|
|
"61": "japanese_spaniel",
|
|
"62": "keeshond",
|
|
"63": "kelpie",
|
|
"64": "kerry_blue_terrier",
|
|
"65": "komondor",
|
|
"66": "kuvasz",
|
|
"67": "labrador_retriever",
|
|
"68": "lakeland_terrier",
|
|
"69": "leonberg",
|
|
"70": "lhasa",
|
|
"71": "malamute",
|
|
"72": "malinois",
|
|
"73": "maltese_dog",
|
|
"74": "mexican_hairless",
|
|
"75": "miniature_pinscher",
|
|
"76": "miniature_poodle",
|
|
"77": "miniature_schnauzer",
|
|
"78": "newfoundland",
|
|
"79": "norfolk_terrier",
|
|
"80": "norwegian_elkhound",
|
|
"81": "norwich_terrier",
|
|
"82": "old_english_sheepdog",
|
|
"83": "otterhound",
|
|
"84": "papillon",
|
|
"85": "pekinese",
|
|
"86": "pembroke",
|
|
"87": "pomeranian",
|
|
"88": "pug",
|
|
"89": "redbone",
|
|
"90": "rhodesian_ridgeback",
|
|
"91": "rottweiler",
|
|
"92": "saint_bernard",
|
|
"93": "saluki",
|
|
"94": "samoyed",
|
|
"95": "schipperke",
|
|
"96": "scotch_terrier",
|
|
"97": "scottish_deerhound",
|
|
"98": "sealyham_terrier",
|
|
"99": "shetland_sheepdog",
|
|
"100": "shih-tzu",
|
|
"101": "siberian_husky",
|
|
"102": "silky_terrier",
|
|
"103": "soft-coated_wheaten_terrier",
|
|
"104": "staffordshire_bullterrier",
|
|
"105": "standard_poodle",
|
|
"106": "standard_schnauzer",
|
|
"107": "sussex_spaniel",
|
|
"108": "test",
|
|
"109": "tibetan_mastiff",
|
|
"110": "tibetan_terrier",
|
|
"111": "toy_poodle",
|
|
"112": "toy_terrier",
|
|
"113": "vizsla",
|
|
"114": "walker_hound",
|
|
"115": "weimaraner",
|
|
"116": "welsh_springer_spaniel",
|
|
"117": "west_highland_white_terrier",
|
|
"118": "whippet",
|
|
"119": "wire-haired_fox_terrier",
|
|
"120": "yorkshire_terrier"
|
|
}
|
|
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=dog_breed_classification,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="Dog Breed Classification",
|
|
description="Upload an image to classify it into one of the 121 dog breed categories."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |