|
import gradio as gr
|
|
from transformers import AutoImageProcessor
|
|
from transformers import SiglipForImageClassification
|
|
from transformers.image_utils import load_image
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Indian-Western-Food-34"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def food_classification(image):
|
|
"""Predicts the type of food in an image."""
|
|
image = Image.fromarray(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
labels = {
|
|
"0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries",
|
|
"4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie",
|
|
"9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake",
|
|
"14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla",
|
|
"18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls",
|
|
"23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette",
|
|
"28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa",
|
|
"33": "Sushi"
|
|
}
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=food_classification,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="Indian & Western Food Classification",
|
|
description="Upload a food image to classify it into one of the 34 food types."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |