SigLIP2-Image-Classification / indian_western_food_classify.py
prithivMLmods's picture
Upload 20 files
22ba041 verified
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Indian-Western-Food-34"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def food_classification(image):
"""Predicts the type of food in an image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries",
"4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie",
"9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake",
"14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla",
"18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls",
"23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette",
"28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa",
"33": "Sushi"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=food_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Indian & Western Food Classification",
description="Upload a food image to classify it into one of the 34 food types."
)
# Launch the app
if __name__ == "__main__":
iface.launch()