|
import gradio as gr
|
|
from transformers import AutoImageProcessor, SiglipForImageClassification
|
|
from transformers.image_utils import load_image
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Mnist-Digits-SigLIP2"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def classify_digit(image):
|
|
"""Predicts the digit in the given handwritten digit image."""
|
|
image = Image.fromarray(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
labels = {
|
|
"0": "0", "1": "1", "2": "2", "3": "3", "4": "4",
|
|
"5": "5", "6": "6", "7": "7", "8": "8", "9": "9"
|
|
}
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=classify_digit,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="MNIST Digit Classification 🔢",
|
|
description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |