SigLIP2-Image-Classification / rice_leaf_disease.py
prithivMLmods's picture
Upload 20 files
22ba041 verified
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Rice-Leaf-Disease"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def classify_leaf_disease(image):
"""Predicts the disease type in a rice leaf image."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "Bacterial Blight",
"1": "Blast",
"2": "Brown Spot",
"3": "Healthy",
"4": "Tungro"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=classify_leaf_disease,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Rice Leaf Disease Classification 🌾",
description="Upload an image of a rice leaf to identify if it is healthy or affected by diseases like Bacterial Blight, Blast, Brown Spot, or Tungro."
)
# Launch the app
if __name__ == "__main__":
iface.launch()