|
import gradio as gr
|
|
from transformers import AutoImageProcessor, SiglipForImageClassification
|
|
from transformers.image_utils import load_image
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Sketch-126-DomainNet"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def sketch_classification(image):
|
|
"""Predicts the sketch category for an input image."""
|
|
|
|
image = Image.fromarray(image).convert("RGB")
|
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
|
|
labels = {
|
|
"0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus",
|
|
"5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear",
|
|
"10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap",
|
|
"15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake",
|
|
"20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon",
|
|
"25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan",
|
|
"30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup",
|
|
"35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile",
|
|
"40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums",
|
|
"45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather",
|
|
"50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot",
|
|
"55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes",
|
|
"60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse",
|
|
"65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion",
|
|
"70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito",
|
|
"75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda",
|
|
"80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin",
|
|
"85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet",
|
|
"90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle",
|
|
"95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep",
|
|
"100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider",
|
|
"105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean",
|
|
"109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear",
|
|
"114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China",
|
|
"117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella",
|
|
"122": "vase", "123": "watermelon", "124": "whale", "125": "zebra"
|
|
}
|
|
|
|
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=sketch_classification,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="Sketch-126-DomainNet Classification",
|
|
description="Upload a sketch to classify it into one of 126 categories."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch()
|
|
|