import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Age-Classification-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def age_classification(image): """Predicts the age group of a person from an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Child 0-12", "1": "Teenager 13-20", "2": "Adult 21-44", "3": "Middle Age 45-64", "4": "Aged 65+" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=age_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Age Group Classification", description="Upload an image to predict the person's age group." ) # Launch the app if __name__ == "__main__": iface.launch()