import gradio as gr import torch from transformers import AutoModel, AutoProcessor from gender_classification import gender_classification from emotion_classification import emotion_classification from dog_breed import dog_breed_classification from deepfake_quality import deepfake_classification from gym_workout_classification import workout_classification from augmented_waste_classifier import waste_classification from age_classification import age_classification from mnist_digits import classify_digit from fashion_mnist_cloth import fashion_mnist_classification from indian_western_food_classify import food_classification from bird_species import bird_classification from alphabet_sign_language_detection import sign_language_classification from rice_leaf_disease import classify_leaf_disease from traffic_density import traffic_density_classification from clip_art import clipart_classification from multisource_121 import multisource_classification from painting_126 import painting_classification from sketch_126 import sketch_classification # New import # Main classification function for multi-model classification. def classify(image, model_name): if model_name == "gender": return gender_classification(image) elif model_name == "emotion": return emotion_classification(image) elif model_name == "dog breed": return dog_breed_classification(image) elif model_name == "deepfake": return deepfake_classification(image) elif model_name == "gym workout": return workout_classification(image) elif model_name == "waste": return waste_classification(image) elif model_name == "age": return age_classification(image) elif model_name == "mnist": return classify_digit(image) elif model_name == "fashion_mnist": return fashion_mnist_classification(image) elif model_name == "food": return food_classification(image) elif model_name == "bird": return bird_classification(image) elif model_name == "leaf disease": return classify_leaf_disease(image) elif model_name == "sign language": return sign_language_classification(image) elif model_name == "traffic density": return traffic_density_classification(image) elif model_name == "clip art": return clipart_classification(image) elif model_name == "multisource": return multisource_classification(image) elif model_name == "painting": return painting_classification(image) elif model_name == "sketch": # New option return sketch_classification(image) else: return {"Error": "No model selected"} # Function to update the selected model and button styles. def select_model(model_name): model_variants = { "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary", "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary", "sign language": "secondary", "traffic density": "secondary", "clip art": "secondary", "multisource": "secondary", "painting": "secondary", "sketch": "secondary" # New model variant } model_variants[model_name] = "primary" return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants)) # Zero-Shot Classification Setup (SigLIP models) sg1_ckpt = "google/siglip-so400m-patch14-384" siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval() siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt) sg2_ckpt = "google/siglip2-so400m-patch14-384" siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval() siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt) def postprocess_siglip(sg1_probs, sg2_probs, labels): sg1_output = {labels[i]: sg1_probs[0][i].item() for i in range(len(labels))} sg2_output = {labels[i]: sg2_probs[0][i].item() for i in range(len(labels))} return sg1_output, sg2_output def siglip_detector(image, texts): sg1_inputs = siglip1_processor( text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 ).to("cpu") sg2_inputs = siglip2_processor( text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 ).to("cpu") with torch.no_grad(): sg1_outputs = siglip1_model(**sg1_inputs) sg2_outputs = siglip2_model(**sg2_inputs) sg1_logits_per_image = sg1_outputs.logits_per_image sg2_logits_per_image = sg2_outputs.logits_per_image sg1_probs = torch.sigmoid(sg1_logits_per_image) sg2_probs = torch.sigmoid(sg2_logits_per_image) return sg1_probs, sg2_probs def infer(image, candidate_labels): candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] sg1_probs, sg2_probs = siglip_detector(image, candidate_labels) return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels) # Build the Gradio Interface with two tabs. with gr.Blocks() as demo: gr.Markdown("# Multi-Domain & Zero-Shot Image Classification") with gr.Tabs(): # Tab 1: Multi-Model Classification with gr.Tab("Multi-Domain Classification"): with gr.Sidebar(): gr.Markdown("# Choose Domain") with gr.Row(): age_btn = gr.Button("Age Classification", variant="primary") gender_btn = gr.Button("Gender Classification", variant="secondary") emotion_btn = gr.Button("Emotion Classification", variant="secondary") gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") bird_btn = gr.Button("Bird Species Classification", variant="secondary") waste_btn = gr.Button("Waste Classification", variant="secondary") deepfake_btn = gr.Button("Deepfake Quality Test", variant="secondary") traffic_density_btn = gr.Button("Traffic Density", variant="secondary") sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary") clip_art_btn = gr.Button("Clip Art 126", variant="secondary") mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary") fashion_mnist_btn = gr.Button("Fashion MNIST (only cloth)", variant="secondary") food_btn = gr.Button("Indian/Western Food Type", variant="secondary") leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary") multisource_btn = gr.Button("Multi Source 121", variant="secondary") painting_btn = gr.Button("Painting 126", variant="secondary") sketch_btn = gr.Button("Sketch 126", variant="secondary") selected_model = gr.State("age") gr.Markdown("### Current Model:") model_display = gr.Textbox(value="age", interactive=False) selected_model.change(lambda m: m, selected_model, model_display) buttons = [ gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn, painting_btn, sketch_btn # Include new button ] model_names = [ "gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language", "traffic density", "clip art", "multisource", "painting", "sketch" # New model name ] for btn, name in zip(buttons, model_names): btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons) with gr.Row(): with gr.Column(): image_input = gr.Image(type="numpy", label="Upload Image") analyze_btn = gr.Button("Classify / Predict") output_label = gr.Label(label="Prediction Scores") analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label) # Tab 2: Zero-Shot Classification (SigLIP) with gr.Tab("Zero-Shot Classification"): gr.Markdown("## Compare SigLIP 1 and SigLIP 2 on Zero-Shot Classification") with gr.Row(): with gr.Column(): zs_image_input = gr.Image(type="pil", label="Upload Image") zs_text_input = gr.Textbox(label="Input a list of labels (comma separated)") zs_run_button = gr.Button("Run") with gr.Column(): siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3) siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3) zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output]) demo.launch()