import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Gym-Workout-Classifier-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def workout_classification(image): """Predicts workout exercise classification for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "barbell biceps curl", "1": "bench press", "2": "chest fly machine", "3": "deadlift", "4": "decline bench press", "5": "hammer curl", "6": "hip thrust", "7": "incline bench press", "8": "lat pulldown", "9": "lateral raises", "10": "leg extension", "11": "leg raises", "12": "plank", "13": "pull up", "14": "push up", "15": "romanian deadlift", "16": "russian twist", "17": "shoulder press", "18": "squat", "19": "t bar row", "20": "tricep dips", "21": "tricep pushdown" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=workout_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Gym Workout Classification", description="Upload an image to classify the workout exercise." ) # Launch the app if __name__ == "__main__": iface.launch()