import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Alphabet-Sign-Language-Detection" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def sign_language_classification(image): """Predicts sign language alphabet category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J", "10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T", "20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=sign_language_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Alphabet Sign Language Detection", description="Upload an image to classify it into one of the 26 sign language alphabet categories." ) # Launch the app if __name__ == "__main__": iface.launch()