import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Multisource-121-DomainNet" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def multisource_classification(image): """Predicts the domain category for an input image.""" # Convert the input numpy array to a PIL Image and ensure it is in RGB format image = Image.fromarray(image).convert("RGB") # Process the image and convert it to model inputs inputs = processor(images=image, return_tensors="pt") # Get model predictions without gradient calculations with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Convert logits to probabilities using softmax probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Mapping from class indices to domain labels labels = { "0": "barn", "1": "baseball_bat", "2": "basket", "3": "beach", "4": "bear", "5": "beard", "6": "bee", "7": "bird", "8": "blueberry", "9": "bowtie", "10": "bracelet", "11": "brain", "12": "bread", "13": "broccoli", "14": "bus", "15": "butterfly", "16": "circle", "17": "cloud", "18": "cruise_ship", "19": "dolphin", "20": "dumbbell", "21": "elephant", "22": "eye", "23": "eyeglasses", "24": "feather", "25": "fish", "26": "flower", "27": "foot", "28": "frog", "29": "giraffe", "30": "goatee", "31": "golf_club", "32": "grapes", "33": "grass", "34": "guitar", "35": "hamburger", "36": "hand", "37": "hat", "38": "headphones", "39": "helicopter", "40": "hexagon", "41": "hockey_stick", "42": "horse", "43": "hourglass", "44": "house", "45": "ice_cream", "46": "jacket", "47": "ladder", "48": "leg", "49": "lipstick", "50": "megaphone", "51": "monkey", "52": "moon", "53": "mushroom", "54": "necklace", "55": "owl", "56": "panda", "57": "pear", "58": "peas", "59": "penguin", "60": "pig", "61": "pillow", "62": "pineapple", "63": "pizza", "64": "pool", "65": "popsicle", "66": "rabbit", "67": "rhinoceros", "68": "rifle", "69": "river", "70": "sailboat", "71": "sandwich", "72": "sea_turtle", "73": "shark", "74": "shoe", "75": "skyscraper", "76": "snorkel", "77": "snowman", "78": "soccer_ball", "79": "speedboat", "80": "spider", "81": "spoon", "82": "square", "83": "squirrel", "84": "stethoscope", "85": "strawberry", "86": "streetlight", "87": "submarine", "88": "suitcase", "89": "sun", "90": "sweater", "91": "sword", "92": "table", "93": "teapot", "94": "teddy-bear", "95": "telephone", "96": "tent", "97": "The_Eiffel_Tower", "98": "The_Great_Wall_of_China", "99": "The_Mona_Lisa", "100": "tiger", "101": "toaster", "102": "tooth", "103": "tornado", "104": "tractor", "105": "train", "106": "tree", "107": "triangle", "108": "trombone", "109": "truck", "110": "trumpet", "111": "umbrella", "112": "vase", "113": "violin", "114": "watermelon", "115": "whale", "116": "windmill", "117": "wine_glass", "118": "yoga", "119": "zebra", "120": "zigzag" } # Create a dictionary mapping each label to its corresponding probability (rounded) predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=multisource_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Multisource-121-DomainNet Classification", description="Upload an image to classify it into one of 121 domain categories." ) # Launch the app if __name__ == "__main__": iface.launch()