import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Rice-Leaf-Disease" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_leaf_disease(image): """Predicts the disease type in a rice leaf image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Bacterial Blight", "1": "Blast", "2": "Brown Spot", "3": "Healthy", "4": "Tungro" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_leaf_disease, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Rice Leaf Disease Classification 🌾", description="Upload an image of a rice leaf to identify if it is healthy or affected by diseases like Bacterial Blight, Blast, Brown Spot, or Tungro." ) # Launch the app if __name__ == "__main__": iface.launch()