Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,997 Bytes
ef689dc 19b4232 ef689dc f6d08a7 19b4232 f6d08a7 19b4232 f6d08a7 19b4232 f6d08a7 ef689dc f6d08a7 19b4232 f6d08a7 ef313f6 f6d08a7 9368837 f6d08a7 ef313f6 f6d08a7 ef313f6 f6d08a7 9368837 f6d08a7 4f2736c f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 9368837 f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 9f9f1fb f6d08a7 9f9f1fb f6d08a7 9f9f1fb f6d08a7 9f9f1fb f6d08a7 9f9f1fb f6d08a7 9f9f1fb f6d08a7 19b4232 f6d08a7 19b4232 f6d08a7 9f9f1fb f6d08a7 19b4232 f6d08a7 19b4232 f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 9f9f1fb f6d08a7 4f2736c f6d08a7 4f2736c f6d08a7 9f9f1fb f6d08a7 4f2736c f6d08a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Godzilla-Piano-Chords-Texturing-Transformer
#============================================================================================
print('=' * 70)
print('Godzilla Piano Chords Texturing Transformer Gradio App')
print('=' * 70)
print('Loading core Godzilla Piano Chords Texturing Transformer modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Godzilla Piano Chords Texturing Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Godzilla Piano Chords Texturing Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Godzilla_Piano_Chords_Texturing_Trained_Model_18001_steps_0.8099_loss_0.7677_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
MAX_MELODY_NOTES = 64
MAX_GEN_TOKS = 3072
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 1536
PAD_IDX = 708
model = TransformerWrapper(num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Godzilla-Piano-Transformer', filename=MODEL_CHECKPOINT)
model.load_state_dict(torch.load(model_checkpoint, map_location=device_type, weights_only=True))
model = torch.compile(model, mode='max-autotune')
model.to(device_type)
model.eval()
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
escore = TMIDIX.augment_enhanced_score_notes(zscore, timings_divider=32)
escore = TMIDIX.fix_escore_notes_durations(escore)
cscore = TMIDIX.chordify_score([1000, escore])
score = []
chords = []
pc = cscore[0]
for c in cscore:
tones_chord = sorted(set([e[4] % 12 for e in c]))
if tones_chord not in TMIDIX.ALL_CHORDS_SORTED:
tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord, use_full_chords=False)
chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
chords.append(chord_tok+384)
score.append(chord_tok+384)
score.append(max(0, min(127, c[0][1]-pc[0][1])))
for n in c:
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
pc = c
print('Done!')
print('=' * 70)
print('Score has', len(chords), 'chords')
print('Score hss', len(score), 'tokens')
print('=' * 70)
return score, chords
#==================================================================================
@spaces.GPU
def Generate_Chords_Textures(input_midi,
input_melody,
melody_patch,
use_nth_note,
model_temperature,
model_sampling_top_p
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('Input MIDI file name:', fn)
print('Source melody patch:', melody_patch)
print('Use nth melody note:', use_nth_note)
print('Model temperature:', model_temperature)
print('Model top p:', model_sampling_top_p)
print('=' * 70)
#==================================================================
print('Loading MIDI...')
score, chords = load_midi(input_midi)
print('Sample score chords', chords[:10])
print('Sample score tokens', score[:10])
#==================================================================
print('=' * 70)
print('Generating...')
x = torch.LongTensor([705] + chords[:128] + [706]).cuda()
with ctx:
out = model.generate(x,
1024,
temperature=model_temperature,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p},
return_prime=False,
eos_token=707,
verbose=False)
final_song = out.tolist()
#==================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', final_song[:15])
print('=' * 70)
song_f = []
if len(final_song) != 0:
time = 0
dur = 1
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [0] * 16
for m in song:
if 0 <= m < 128:
time += m * 32
elif 128 < m < 256:
dur = (m-128) * 32
elif 256 < m < 384:
pitch = (m-256)
song_f.append(['note', time, dur, 0, pitch, max(40, pitch), 0])
fn1 = "Godzilla-Piano-Chords-Texturing-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Godzilla Piano Chords Texturing Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches_map
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Godzilla Piano Chords Texturing Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Solo Piano chords Texturing Transformer music transformer</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/projectlosangeles/Godzilla-Piano-Chords-Texturing-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Upload source melody MIDI or enter a search query for a sample melody below")
gr.Markdown("### PLEASE NOTE: The demo is limited and will only texture first 128 chords of the MIDI file")
input_midi = gr.File(label="Input MIDI",
file_types=[".midi", ".mid", ".kar"]
)
gr.Markdown("## Generation options")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Generation results")
output_title = gr.Textbox(label="MIDI melody title")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Generate_Chords_Textures,
[input_midi,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
]
)
gr.Examples(
[["Sharing The Night Together.kar", 0.9, 0.96]
],
[input_midi,
model_temperature,
model_sampling_top_p
],
[output_audio,
output_plot,
output_midi
],
Generate_Chords_Textures
)
#==================================================================================
demo.launch()
#================================================================================== |