import gradio as gr from transformers import pipeline import torch modelo_path = "proxectonos/Nos_ASR-wav2vec2-large-xlsr-53-gl-with-lm" asr_pipeline = pipeline( "automatic-speech-recognition", model=modelo_path, device=0 if torch.cuda.is_available() else -1 ) fronted_theme = "Soft" def cargar(audio_filepath): if audio_filepath is None: return "Por favor, carga un ficheiro de audio." outtext = asr_pipeline(audio_filepath) texto_transcrito = outtext["text"] return texto_transcrito with gr.Blocks(fronted_theme) as demo: with gr.Row(): with gr.Column(): gr.Markdown( """ ##
"""
)
with gr.Column():
with gr.Row():
gr.Markdown(
"""