import gradio as gr from transformers import pipeline import torch modelo_path = "proxectonos/Nos_ASR-wav2vec2-large-xlsr-53-gl-with-lm" asr_pipeline = pipeline( "automatic-speech-recognition", model=modelo_path, device=0 if torch.cuda.is_available() else -1 ) fronted_theme = "Soft" def cargar(audio_filepath): if audio_filepath is None: return "Por favor, carga un ficheiro de audio." outtext = asr_pipeline(audio_filepath) texto_transcrito = outtext["text"] return texto_transcrito with gr.Blocks(fronted_theme) as demo: with gr.Row(): with gr.Column(): gr.Markdown( """ ##

🗣️ ASR Demo Proxecto Nós

""" ) gr.Markdown( """ ## """ ) with gr.Column(): with gr.Row(): gr.Markdown( """



Este space mostra o modelo ASR desenvolvido polo **[Proxecto Nós](https://huggingface.co/proxectonos)**.
""" ) with gr.Row(): input_audio = gr.Audio(label="Entrada", type="filepath") with gr.Row(): output_text = gr.Textbox(label="Saída", type="text") with gr.Row(): asr_button = gr.Button("Xerar", elem_id="send-btn", visible=True) clear_button = gr.ClearButton([input_audio, output_text], value="Limpar", elem_id="clear-btn", visible=True) asr_button.click( cargar, inputs=[input_audio], outputs=[output_text], ) demo.launch()