pujanpaudel's picture
Rename appnamechanged.py to app.py
9cfd770 verified
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import textwrap
# Page configuration
st.set_page_config(
page_title="Article Recommender",
layout="wide"
)
# Custom CSS with improved visibility
st.markdown("""
<style>
.article-card {
background-color: #ffffff;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin-bottom: 1rem;
color: #1f1f1f; /* Dark text color for contrast */
}
.article-title {
color: #1f1f1f;
font-size: 1.5rem;
margin-bottom: 1rem;
font-weight: bold;
}
.article-preview {
color: #2d2d2d; /* Darker grey for better visibility */
font-size: 1rem;
line-height: 1.6;
}
.article-full-text {
color: #2d2d2d;
font-size: 1.1rem;
line-height: 1.8;
white-space: pre-wrap; /* Preserve formatting */
}
.recommendation-card {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 8px;
margin-bottom: 1rem;
border: 1px solid #e9ecef;
}
.recommendation-title {
color: #1f1f1f;
font-size: 1.2rem;
margin-bottom: 0.5rem;
font-weight: bold;
}
.recommendation-preview {
color: #2d2d2d;
font-size: 0.9rem;
line-height: 1.5;
}
.page-navigation {
display: flex;
justify-content: center;
gap: 1rem;
margin: 2rem 0;
}
.search-results {
margin: 1rem 0;
padding: 0.5rem;
background-color: #e9ecef;
border-radius: 5px;
color: #1f1f1f;
}
/* Override Streamlit's default text color */
.stMarkdown, .stText {
color: #1f1f1f !important;
}
</style>
""", unsafe_allow_html=True)
# Load and prepare data functions (unchanged)
@st.cache_data
def load_data():
df = pd.read_csv("cleaned.csv")
train_df = pd.read_csv("training.csv")
return (df,train_df)
@st.cache_resource
def prepare_similarity_matrix(df):
tfidf = TfidfVectorizer(max_features=5000)
tf_vectors = tfidf.fit_transform(df["data"]).toarray()
tf_similarity = cosine_similarity(tf_vectors)
return tf_similarity
def get_recommended_articles(title, df, tf_similarity):
title_idx = df[df["title"] == title].index[0]
similar_idx_scores = list(enumerate(tf_similarity[title_idx]))
sorted_similar_idx = sorted(similar_idx_scores, key=lambda x: x[1], reverse=True)
recommended_idx = sorted_similar_idx[1:4]
return recommended_idx
def truncate_text(text, max_words=50):
return " ".join(text.split()[:max_words]) + "..."
# Load data
df,train_df = load_data()
tf_similarity = prepare_similarity_matrix(train_df)
# Initialize session state
if 'page' not in st.session_state:
st.session_state.page = 'home'
# Sidebar with improved visibility
with st.sidebar:
st.title("Navigation")
if st.button("🏠 Home", use_container_width=True):
st.session_state.page = 'home'
st.rerun()
st.markdown("---")
search_query = st.text_input("πŸ” Search Articles:")
# Main content
if st.session_state.page == 'home':
st.title("πŸ“š Article Collection")
# Search functionality
if search_query:
mask = (df["title"].str.contains(search_query, case=False)) | \
(df["text"].str.contains(search_query, case=False))
filtered_df = df[mask]
st.markdown(f"""
<div class="search-results">
πŸ“Š Found {len(filtered_df)} articles matching '{search_query}'
</div>
""", unsafe_allow_html=True)
else:
filtered_df = df
# Pagination
articles_per_page = 10
total_pages = len(filtered_df) // articles_per_page + (1 if len(filtered_df) % articles_per_page > 0 else 0)
col1, col2, col3 = st.columns([2, 3, 2])
with col2:
page_number = st.number_input("Page", min_value=1, max_value=max(1, total_pages), value=1) - 1
start_idx = page_number * articles_per_page
end_idx = start_idx + articles_per_page
page_df = filtered_df.iloc[start_idx:end_idx]
# Display articles
for _, row in page_df.iterrows():
st.markdown(f"""
<div class="article-card">
<div class="article-title">{row["title"]}</div>
<div class="article-preview">{truncate_text(row["text"])}</div>
</div>
""", unsafe_allow_html=True)
if st.button("πŸ“– Read Full Article", key=f"read_{_}"):
st.session_state.page = 'article'
st.session_state.article_title = row["title"]
st.rerun()
else: # Article page
# Back button in sidebar
if st.sidebar.button("← Back to Articles", use_container_width=True):
st.session_state.page = 'home'
st.rerun()
# Display full article
article_data = df[df["title"] == st.session_state.article_title].iloc[0]
st.title(article_data["title"])
# Article container with improved visibility
st.markdown(f"""
<div class="article-card">
<div class="article-full-text">
{article_data["text"]}
</div>
</div>
""", unsafe_allow_html=True)
# Recommendations section
st.markdown("---")
st.subheader("πŸ“š Recommended Articles")
recommended_articles = get_recommended_articles(st.session_state.article_title, df, tf_similarity)
cols = st.columns(3)
for idx, (article_idx, similarity_score) in enumerate(recommended_articles):
with cols[idx]:
st.markdown(f"""
<div class="recommendation-card">
<div class="recommendation-title">{df['title'].iloc[article_idx]}</div>
<div class="recommendation-preview">{truncate_text(df["text"].iloc[article_idx], max_words=30)}</div>
</div>
""", unsafe_allow_html=True)
if st.button("πŸ“– Read This Article", key=f"rec_{article_idx}"):
st.session_state.article_title = df["title"].iloc[article_idx]
st.rerun()