Spaces:
No application file
No application file
added all files
Browse files- .gitattributes +2 -0
- app.py +199 -0
- cleaned.csv +3 -0
- requirements.txt +0 -0
- training.csv +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cleaned.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
training.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import textwrap
|
7 |
+
|
8 |
+
# Page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Article Recommender",
|
11 |
+
layout="wide"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Custom CSS with improved visibility
|
15 |
+
st.markdown("""
|
16 |
+
<style>
|
17 |
+
.article-card {
|
18 |
+
background-color: #ffffff;
|
19 |
+
padding: 1.5rem;
|
20 |
+
border-radius: 10px;
|
21 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
22 |
+
margin-bottom: 1rem;
|
23 |
+
color: #1f1f1f; /* Dark text color for contrast */
|
24 |
+
}
|
25 |
+
.article-title {
|
26 |
+
color: #1f1f1f;
|
27 |
+
font-size: 1.5rem;
|
28 |
+
margin-bottom: 1rem;
|
29 |
+
font-weight: bold;
|
30 |
+
}
|
31 |
+
.article-preview {
|
32 |
+
color: #2d2d2d; /* Darker grey for better visibility */
|
33 |
+
font-size: 1rem;
|
34 |
+
line-height: 1.6;
|
35 |
+
}
|
36 |
+
.article-full-text {
|
37 |
+
color: #2d2d2d;
|
38 |
+
font-size: 1.1rem;
|
39 |
+
line-height: 1.8;
|
40 |
+
white-space: pre-wrap; /* Preserve formatting */
|
41 |
+
}
|
42 |
+
.recommendation-card {
|
43 |
+
background-color: #f8f9fa;
|
44 |
+
padding: 1rem;
|
45 |
+
border-radius: 8px;
|
46 |
+
margin-bottom: 1rem;
|
47 |
+
border: 1px solid #e9ecef;
|
48 |
+
}
|
49 |
+
.recommendation-title {
|
50 |
+
color: #1f1f1f;
|
51 |
+
font-size: 1.2rem;
|
52 |
+
margin-bottom: 0.5rem;
|
53 |
+
font-weight: bold;
|
54 |
+
}
|
55 |
+
.recommendation-preview {
|
56 |
+
color: #2d2d2d;
|
57 |
+
font-size: 0.9rem;
|
58 |
+
line-height: 1.5;
|
59 |
+
}
|
60 |
+
.page-navigation {
|
61 |
+
display: flex;
|
62 |
+
justify-content: center;
|
63 |
+
gap: 1rem;
|
64 |
+
margin: 2rem 0;
|
65 |
+
}
|
66 |
+
.search-results {
|
67 |
+
margin: 1rem 0;
|
68 |
+
padding: 0.5rem;
|
69 |
+
background-color: #e9ecef;
|
70 |
+
border-radius: 5px;
|
71 |
+
color: #1f1f1f;
|
72 |
+
}
|
73 |
+
/* Override Streamlit's default text color */
|
74 |
+
.stMarkdown, .stText {
|
75 |
+
color: #1f1f1f !important;
|
76 |
+
}
|
77 |
+
</style>
|
78 |
+
""", unsafe_allow_html=True)
|
79 |
+
|
80 |
+
# Load and prepare data functions (unchanged)
|
81 |
+
@st.cache_data
|
82 |
+
def load_data():
|
83 |
+
df = pd.read_csv("cleaned.csv")
|
84 |
+
train_df = pd.read_csv("training.csv")
|
85 |
+
return (df,train_df)
|
86 |
+
|
87 |
+
@st.cache_resource
|
88 |
+
def prepare_similarity_matrix(df):
|
89 |
+
tfidf = TfidfVectorizer(max_features=5000)
|
90 |
+
tf_vectors = tfidf.fit_transform(df["data"]).toarray()
|
91 |
+
tf_similarity = cosine_similarity(tf_vectors)
|
92 |
+
return tf_similarity
|
93 |
+
|
94 |
+
def get_recommended_articles(title, df, tf_similarity):
|
95 |
+
title_idx = df[df["title"] == title].index[0]
|
96 |
+
similar_idx_scores = list(enumerate(tf_similarity[title_idx]))
|
97 |
+
sorted_similar_idx = sorted(similar_idx_scores, key=lambda x: x[1], reverse=True)
|
98 |
+
recommended_idx = sorted_similar_idx[1:4]
|
99 |
+
return recommended_idx
|
100 |
+
|
101 |
+
def truncate_text(text, max_words=50):
|
102 |
+
return " ".join(text.split()[:max_words]) + "..."
|
103 |
+
|
104 |
+
# Load data
|
105 |
+
df,train_df = load_data()
|
106 |
+
tf_similarity = prepare_similarity_matrix(train_df)
|
107 |
+
|
108 |
+
# Initialize session state
|
109 |
+
if 'page' not in st.session_state:
|
110 |
+
st.session_state.page = 'home'
|
111 |
+
|
112 |
+
# Sidebar with improved visibility
|
113 |
+
with st.sidebar:
|
114 |
+
st.title("Navigation")
|
115 |
+
if st.button("π Home", use_container_width=True):
|
116 |
+
st.session_state.page = 'home'
|
117 |
+
st.rerun()
|
118 |
+
|
119 |
+
st.markdown("---")
|
120 |
+
search_query = st.text_input("π Search Articles:")
|
121 |
+
|
122 |
+
# Main content
|
123 |
+
if st.session_state.page == 'home':
|
124 |
+
st.title("π Article Collection")
|
125 |
+
|
126 |
+
# Search functionality
|
127 |
+
if search_query:
|
128 |
+
mask = (df["title"].str.contains(search_query, case=False)) | \
|
129 |
+
(df["text"].str.contains(search_query, case=False))
|
130 |
+
filtered_df = df[mask]
|
131 |
+
st.markdown(f"""
|
132 |
+
<div class="search-results">
|
133 |
+
π Found {len(filtered_df)} articles matching '{search_query}'
|
134 |
+
</div>
|
135 |
+
""", unsafe_allow_html=True)
|
136 |
+
else:
|
137 |
+
filtered_df = df
|
138 |
+
|
139 |
+
# Pagination
|
140 |
+
articles_per_page = 10
|
141 |
+
total_pages = len(filtered_df) // articles_per_page + (1 if len(filtered_df) % articles_per_page > 0 else 0)
|
142 |
+
col1, col2, col3 = st.columns([2, 3, 2])
|
143 |
+
with col2:
|
144 |
+
page_number = st.number_input("Page", min_value=1, max_value=max(1, total_pages), value=1) - 1
|
145 |
+
|
146 |
+
start_idx = page_number * articles_per_page
|
147 |
+
end_idx = start_idx + articles_per_page
|
148 |
+
page_df = filtered_df.iloc[start_idx:end_idx]
|
149 |
+
|
150 |
+
# Display articles
|
151 |
+
for _, row in page_df.iterrows():
|
152 |
+
st.markdown(f"""
|
153 |
+
<div class="article-card">
|
154 |
+
<div class="article-title">{row["title"]}</div>
|
155 |
+
<div class="article-preview">{truncate_text(row["text"])}</div>
|
156 |
+
</div>
|
157 |
+
""", unsafe_allow_html=True)
|
158 |
+
if st.button("π Read Full Article", key=f"read_{_}"):
|
159 |
+
st.session_state.page = 'article'
|
160 |
+
st.session_state.article_title = row["title"]
|
161 |
+
st.rerun()
|
162 |
+
|
163 |
+
else: # Article page
|
164 |
+
# Back button in sidebar
|
165 |
+
if st.sidebar.button("β Back to Articles", use_container_width=True):
|
166 |
+
st.session_state.page = 'home'
|
167 |
+
st.rerun()
|
168 |
+
|
169 |
+
# Display full article
|
170 |
+
article_data = df[df["title"] == st.session_state.article_title].iloc[0]
|
171 |
+
|
172 |
+
st.title(article_data["title"])
|
173 |
+
|
174 |
+
# Article container with improved visibility
|
175 |
+
st.markdown(f"""
|
176 |
+
<div class="article-card">
|
177 |
+
<div class="article-full-text">
|
178 |
+
{article_data["text"]}
|
179 |
+
</div>
|
180 |
+
</div>
|
181 |
+
""", unsafe_allow_html=True)
|
182 |
+
|
183 |
+
# Recommendations section
|
184 |
+
st.markdown("---")
|
185 |
+
st.subheader("π Recommended Articles")
|
186 |
+
recommended_articles = get_recommended_articles(st.session_state.article_title, df, tf_similarity)
|
187 |
+
|
188 |
+
cols = st.columns(3)
|
189 |
+
for idx, (article_idx, similarity_score) in enumerate(recommended_articles):
|
190 |
+
with cols[idx]:
|
191 |
+
st.markdown(f"""
|
192 |
+
<div class="recommendation-card">
|
193 |
+
<div class="recommendation-title">{df['title'].iloc[article_idx]}</div>
|
194 |
+
<div class="recommendation-preview">{truncate_text(df["text"].iloc[article_idx], max_words=30)}</div>
|
195 |
+
</div>
|
196 |
+
""", unsafe_allow_html=True)
|
197 |
+
if st.button("π Read This Article", key=f"rec_{article_idx}"):
|
198 |
+
st.session_state.article_title = df["title"].iloc[article_idx]
|
199 |
+
st.rerun()
|
cleaned.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c196ee96b98b14e4bfd83d7b6ea55b5ccc0f25f23f5cab45e56d41a8f96642f2
|
3 |
+
size 13426956
|
requirements.txt
ADDED
Binary file (4.87 kB). View file
|
|
training.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbd165c71d1994f8236fe298c6eb3fa6b1ac06cf7555ae5eb84e50cbc459afb3
|
3 |
+
size 14748930
|