Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import statsmodels.formula.api as smf
|
4 |
+
from linearmodels.iv import IV2SLS
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
warnings.simplefilter(action='ignore', category=FutureWarning)
|
8 |
+
|
9 |
+
def process_file(file):
|
10 |
+
global df
|
11 |
+
df = pd.read_csv(file.name)
|
12 |
+
return df.columns.tolist()
|
13 |
+
|
14 |
+
def run_2sls(dependent_var, endogenous_vars, instruments, exogenous_vars):
|
15 |
+
if not all([dependent_var, endogenous_vars, instruments]):
|
16 |
+
return "Error: Please select all required variables."
|
17 |
+
|
18 |
+
endogenous_vars = endogenous_vars.split(",")
|
19 |
+
instruments = instruments.split(",")
|
20 |
+
exogenous_vars = exogenous_vars.split(",") if exogenous_vars else []
|
21 |
+
|
22 |
+
if len(instruments) < len(endogenous_vars):
|
23 |
+
return "Error: The number of instruments must be at least equal to the number of endogenous variables."
|
24 |
+
|
25 |
+
try:
|
26 |
+
df_selected = df[[dependent_var] + endogenous_vars + instruments + exogenous_vars].dropna()
|
27 |
+
|
28 |
+
# First stage
|
29 |
+
predicted_vars = []
|
30 |
+
for var in endogenous_vars:
|
31 |
+
first_stage_formula = f'{var} ~ ' + ' + '.join(instruments + exogenous_vars)
|
32 |
+
first_stage = smf.ols(first_stage_formula, data=df_selected).fit()
|
33 |
+
df_selected[f'{var}_hat'] = first_stage.fittedvalues
|
34 |
+
predicted_vars.append(f'{var}_hat')
|
35 |
+
|
36 |
+
# Second stage
|
37 |
+
second_stage_formula = f'{dependent_var} ~ ' + ' + '.join(predicted_vars + exogenous_vars)
|
38 |
+
second_stage = smf.ols(second_stage_formula, data=df_selected).fit()
|
39 |
+
|
40 |
+
return second_stage.summary().as_text()
|
41 |
+
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error: {str(e)}"
|
44 |
+
|
45 |
+
with gr.Blocks() as app:
|
46 |
+
gr.Markdown("## Two-Stage Least Squares Regression (2SLS)")
|
47 |
+
|
48 |
+
file_input = gr.File(label="Upload CSV File")
|
49 |
+
column_output = gr.Label(label="Available Columns")
|
50 |
+
file_input.change(process_file, inputs=file_input, outputs=column_output)
|
51 |
+
|
52 |
+
dependent_var = gr.Dropdown(label="Dependent Variable")
|
53 |
+
endogenous_vars = gr.Textbox(label="Endogenous Variables (comma-separated)")
|
54 |
+
instruments = gr.Textbox(label="Instruments (comma-separated)")
|
55 |
+
exogenous_vars = gr.Textbox(label="Exogenous Variables (comma-separated, optional)")
|
56 |
+
|
57 |
+
run_button = gr.Button("Run 2SLS Regression")
|
58 |
+
output = gr.Textbox(label="Regression Output", lines=20)
|
59 |
+
|
60 |
+
run_button.click(run_2sls, inputs=[dependent_var, endogenous_vars, instruments, exogenous_vars], outputs=output)
|
61 |
+
|
62 |
+
app.launch()
|