import pandas as pd import re import nltk import gradio as gr import matplotlib.pyplot as plt import seaborn as sns from nltk.sentiment import SentimentIntensityAnalyzer nltk.download("vader_lexicon") sia = SentimentIntensityAnalyzer() def clean_text(text): if not isinstance(text, str): return "" text = re.sub(r"http\S+", "", text) text = re.sub(r"@\w+|#\w+", "", text) text = re.sub(r"[^\w\s]", "", text) text = text.lower().strip() return text def get_sentiment_label(score, pos_thresh, neg_thresh): if score >= pos_thresh: return "Positive" elif score <= neg_thresh: return "Negative" else: return "Neutral" def analyze_sentiment(file, text_column, pos_thresh, neg_thresh): try: df = pd.read_csv(file.name) except Exception as e: return f"Error reading CSV file: {e}", None, None, None, None if text_column not in df.columns: return "Selected column not found.", None, None, None, None df["clean_text"] = df[text_column].apply(clean_text) df["compound"] = df["clean_text"].apply(lambda x: sia.polarity_scores(x)["compound"]) df["sentiment"] = df["compound"].apply(lambda score: get_sentiment_label(score, pos_thresh, neg_thresh)) # Save CSV output_file = "VADER_sentiment_results.csv" df.to_csv(output_file, index=False) # Plot 1: Sentiment distribution plt.figure(figsize=(6, 4)) sns.countplot(data=df, x="sentiment", palette="Set2") plt.title("Sentiment Distribution") plt.tight_layout() sentiment_fig = "sentiment_dist.png" plt.savefig(sentiment_fig) plt.close() # Plot 2: Compound score histogram plt.figure(figsize=(6, 4)) sns.histplot(df["compound"], bins=30, kde=True, color="skyblue") plt.title("Compound score distribution") plt.xlabel("Compound score") plt.tight_layout() compound_fig = "compound_dist.png" plt.savefig(compound_fig) plt.close() # Sample preview preview = df[[text_column, "compound", "sentiment"]].head(10) return f"Sentiment analysis complete. Processed {len(df)} rows.", preview, output_file, sentiment_fig, compound_fig def get_text_columns(file): try: df = pd.read_csv(file.name, nrows=1) text_columns = df.select_dtypes(include='object').columns.tolist() if not text_columns: return gr.update(choices=[], value=None, label="⚠️ No text columns found!") return gr.update(choices=text_columns, value=text_columns[0]) except Exception: return gr.update(choices=[], value=None, label="⚠️ Error reading file") with gr.Blocks() as app: gr.Markdown("## Sentiment analysis with VADER") gr.Markdown("Upload a CSV, choose a text column, adjust sentiment thresholds, and run analysis.") gr.Markdown("**Citation:** Mat Roni, S. (2025). *Sentiment analysis with VADER on Gradio* (version 1.0) [software]. https://huggingface.co/spaces/pvaluedotone/VADER_sentiment_analysis") with gr.Row(): file_input = gr.File(label="Upload CSV", file_types=[".csv"]) column_dropdown = gr.Dropdown(label="Select Text Column", choices=[], interactive=True) file_input.change(get_text_columns, inputs=file_input, outputs=column_dropdown) with gr.Row(): pos_thresh_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.05, step=0.01, label="Positive Threshold") neg_thresh_slider = gr.Slider(minimum=-1.0, maximum=0.0, value=-0.05, step=0.01, label="Negative Threshold") analyze_button = gr.Button("Run Sentiment Analysis") status_box = gr.Textbox(label="Status") data_output = gr.Dataframe(label="Sample Output (Top 10)") file_output = gr.File(label="Download Full Results") sentiment_plot = gr.Image(label="Sentiment Label Distribution") compound_plot = gr.Image(label="Compound Score Distribution") analyze_button.click( fn=analyze_sentiment, inputs=[file_input, column_dropdown, pos_thresh_slider, neg_thresh_slider], outputs=[status_box, data_output, file_output, sentiment_plot, compound_plot] ) app.launch(debug=True, share=True)