Spaces:
Sleeping
Sleeping
File size: 7,413 Bytes
17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf 17808a8 dcfdbaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import pandas as pd
import re
import torch
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import pipeline
cached_df = None
cached_file_name = None
# Load sentiment pipeline
sentiment_pipeline = pipeline(
"text-classification",
model="pvaluedotone/bigbird-flight",
tokenizer="pvaluedotone/bigbird-flight",
device=0 if torch.cuda.is_available() else -1
)
def clean_text(text):
if not isinstance(text, str):
return ""
text = re.sub(r"http\S+|@\w+|#\w+|[^\w\s]", "", text)
return text.lower().strip()
def predict_sentiment(texts):
results = sentiment_pipeline(texts, truncation=False, batch_size=32)
sentiments = []
confidences = []
for r in results:
label_num = int(r['label'].split('_')[-1])
sentiments.append(label_num)
confidences.append(r['score'])
return sentiments, confidences
def recategorize(labels, mode, pos_threshold, neg_threshold):
if mode == "Original (1β10)":
return labels
elif mode == "Binary (Positive vs Negative)":
return ["Positive" if lbl >= pos_threshold else "Negative" for lbl in labels]
elif mode == "Ternary (Pos/Neu/Neg)":
return [
"Positive" if lbl >= pos_threshold else
"Negative" if lbl <= neg_threshold else
"Neutral" for lbl in labels
]
def analyze_sentiment(file, text_column, mode, pos_thresh, neg_thresh, auto_fix):
global cached_df, cached_file_name
try:
df = pd.read_csv(file.name)
except Exception as e:
return f"Error reading CSV file: {e}", None, None, None, None, None
if text_column not in df.columns:
return "Selected column not found.", None, None, None, None, None
# Check if sentiment analysis already done and file is unchanged
if (
cached_df is not None and
cached_file_name == file.name and
"sentiment_1to10" in cached_df.columns and
"confidence" in cached_df.columns
):
df = cached_df.copy()
else:
# Clean and predict
df["clean_text"] = df[text_column].apply(clean_text)
predictions, confidences = predict_sentiment(df["clean_text"].tolist())
df["sentiment_1to10"] = predictions
df["confidence"] = confidences
# Cache result
cached_df = df.copy()
cached_file_name = file.name
# π Check thresholds
if mode == "Ternary (Pos/Neu/Neg)":
if pos_thresh <= neg_thresh:
if auto_fix:
neg_thresh = pos_thresh - 1
if neg_thresh < 1:
return "β οΈ Cannot auto-correct: thresholds out of valid range (1β10).", None, None, None, None, None
else:
return (
f"β οΈ Invalid thresholds: Positive min ({pos_thresh}) must be greater than Negative max ({neg_thresh}).",
None, None, None, None, None
)
# Apply recategorization
df["sentiment_recategorised"] = recategorize(df["sentiment_1to10"], mode, pos_thresh, neg_thresh)
# Save results
output_file = "bigbird_sentiment_results.csv"
df.to_csv(output_file, index=False)
# Plot 1: Original 10-class sentiment distribution (only if new analysis)
if "plot1_path" not in globals():
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_1to10"], palette="Blues")
plt.title("Original 10-Class Sentiment Distribution")
plt.tight_layout()
global plot1_path
plot1_path = "original_dist.png"
plt.savefig(plot1_path)
plt.close()
# Plot 2: Recategorized sentiment distribution
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_recategorised"], palette="Set2")
plt.title(f"Recategorized Sentiment Distribution ({mode})")
plt.tight_layout()
plot2_path = "recategorised_dist.png"
plt.savefig(plot2_path)
plt.close()
# Plot 3: Confidence score distribution (only if new analysis)
if "plot3_path" not in globals():
plt.figure(figsize=(6, 4))
sns.histplot(df["confidence"], bins=20, color="skyblue", kde=True)
plt.title("Confidence Score Distribution")
plt.xlabel("Confidence")
plt.tight_layout()
global plot3_path
plot3_path = "confidence_dist.png"
plt.savefig(plot3_path)
plt.close()
# Sample preview
preview = df[[text_column, "sentiment_1to10", "confidence", "sentiment_recategorised"]].head(10)
return f"β
Sentiment analysis complete. Used cache: {cached_file_name == file.name}", preview, output_file, plot1_path, plot2_path, plot3_path
def get_text_columns(file):
try:
df = pd.read_csv(file.name, nrows=1)
text_columns = df.select_dtypes(include='object').columns.tolist()
if not text_columns:
return gr.update(choices=[], value=None, label="β οΈ No text columns found!")
return gr.update(choices=text_columns, value=text_columns[0])
except Exception:
return gr.update(choices=[], value=None, label="β οΈ Error reading file")
with gr.Blocks() as app:
gr.Markdown("## βοΈ Sentiment analysis with `pvaluedotone/bigbird-flight`")
gr.Markdown("**Citation:** Mat Roni, S. (2025). *Sentiment analysis with Big Bird Flight on Gradio* (version 1.0) [software]. https://huggingface.co/spaces/pvaluedotone/bigbird-flight")
gr.Markdown("Upload a CSV, choose a text column to analyse, select output style (10-class, binary, or ternary), and analyse.")
with gr.Row():
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
column_dropdown = gr.Dropdown(label="Select Text Column", choices=[], interactive=True)
file_input.change(get_text_columns, inputs=file_input, outputs=column_dropdown)
output_mode = gr.Radio(
label="Sentiment Output Type",
choices=["Original (1β10)", "Binary (Positive vs Negative)", "Ternary (Pos/Neu/Neg)"],
value="Original (1β10)",
interactive=True
)
pos_thresh_slider = gr.Slider(3, 10, value=7, step=1, label="Positive min", visible=False)
neg_thresh_slider = gr.Slider(1, 7, value=4, step=1, label="Negative max", visible=False)
auto_fix_checkbox = gr.Checkbox(label="Auto-correct thresholds if overlapping?", value=True)
def toggle_thresholds(mode):
show_pos = mode != "Original (1β10)"
show_neg = mode == "Ternary (Pos/Neu/Neg)"
return (
gr.update(visible=show_pos),
gr.update(visible=show_neg)
)
output_mode.change(toggle_thresholds, inputs=output_mode, outputs=[pos_thresh_slider, neg_thresh_slider])
run_button = gr.Button("Process sentiment")
status = gr.Textbox(label="Status")
df_output = gr.Dataframe(label="Sample Output (Top 10)")
file_result = gr.File(label="Download Full Results")
plot_orig = gr.Image(label="Original Sentiment Distribution")
plot_recat = gr.Image(label="Recategorised Sentiment Distribution")
plot_conf = gr.Image(label="Confidence Score Distribution")
run_button.click(
analyze_sentiment,
inputs=[file_input, column_dropdown, output_mode, pos_thresh_slider, neg_thresh_slider, auto_fix_checkbox],
outputs=[status, df_output, file_result, plot_orig, plot_recat, plot_conf]
)
app.launch(share=True, debug=True)
|