Spaces:
Running
Running
File size: 8,732 Bytes
c9b15b4 eba7586 c9b15b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import pandas as pd
import re
import torch
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import pipeline
cached_df = None
cached_file_name = None
# Load sentiment pipeline
sentiment_pipeline = pipeline(
"text-classification",
model="pvaluedotone/bigbird-flight-2",
tokenizer="pvaluedotone/bigbird-flight-2",
device=0 if torch.cuda.is_available() else -1
)
# Contractions dictionary
contractions_dict = {
"don't": "do not", "can't": "cannot", "i'm": "i am", "it's": "it is",
"he's": "he is", "she's": "she is", "they're": "they are", "we're": "we are",
"you're": "you are", "that's": "that is", "there's": "there is", "what's": "what is",
"won't": "will not", "isn't": "is not", "aren't": "are not", "wasn't": "was not",
"weren't": "were not", "didn't": "did not", "doesn't": "does not", "haven't": "have not",
"hasn't": "has not", "hadn't": "had not", "wouldn't": "would not", "shouldn't": "should not",
"couldn't": "could not", "mustn't": "must not", "let's": "let us"
}
contractions_pattern = re.compile(r"\b(" + "|".join(re.escape(k) for k in contractions_dict.keys()) + r")\b")
def expand_contractions(text: str) -> str:
def replace(match):
return contractions_dict[match.group(0)]
return contractions_pattern.sub(replace, text)
# Emoticon mapping
emoticon_dict = {
":)": "smile", ":-)": "smile", ":(": "sad", ":-(": "sad",
";)": "wink", ";-)": "wink", ":d": "laugh", ":-d": "laugh",
":p": "playful", ":-p": "playful", ":'(": "cry", ":/": "skeptical",
":'-)": "tears_of_joy"
}
def clean_text(text: str) -> str:
if not isinstance(text, str):
return ""
text = re.sub(r"http\S+|@\w+", "", text)
text = expand_contractions(text)
try:
import emoji
text = emoji.demojize(text)
except ImportError:
pass
for emoticon, desc in emoticon_dict.items():
text = text.replace(emoticon, f" {desc} ")
text = re.sub(r"#(\w+)", r"\1", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def predict_sentiment(texts):
results = sentiment_pipeline(texts, truncation=False, batch_size=32)
sentiments = []
confidences = []
for r in results:
label_num = int(r['label'].split('_')[-1])
sentiments.append(label_num)
confidences.append(r['score'])
return sentiments, confidences
def recategorize(labels, mode, pos_threshold, neg_threshold):
if mode == "Original (1β10)":
return labels
elif mode == "Binary (Positive vs Negative)":
return ["Positive" if lbl >= pos_threshold else "Negative" for lbl in labels]
elif mode == "Ternary (Pos/Neu/Neg)":
return [
"Positive" if lbl >= pos_threshold else
"Negative" if lbl <= neg_threshold else
"Neutral" for lbl in labels
]
def analyze_sentiment(file, text_column, mode, pos_thresh, neg_thresh, auto_fix, apply_cleaning):
global cached_df, cached_file_name
try:
df = pd.read_csv(file.name)
except Exception as e:
return f"Error reading CSV file: {e}", None, None, None, None, None
if text_column not in df.columns:
return "Selected column not found.", None, None, None, None, None
if (
cached_df is not None and
cached_file_name == file.name and
"sentiment_1to10" in cached_df.columns and
"confidence" in cached_df.columns
):
df = cached_df.copy()
else:
if apply_cleaning:
df["processed_text"] = df[text_column].apply(clean_text)
else:
df["processed_text"] = df[text_column].astype(str)
predictions, confidences = predict_sentiment(df["processed_text"].tolist())
df["sentiment_1to10"] = predictions
df["confidence"] = confidences
cached_df = df.copy()
cached_file_name = file.name
if mode == "Ternary (Pos/Neu/Neg)":
if pos_thresh <= neg_thresh:
if auto_fix:
neg_thresh = pos_thresh - 1
if neg_thresh < 1:
return "β οΈ Unable to auto-correct: thresholds out of valid range (1β10).", None, None, None, None, None
else:
return (
f"β οΈ Invalid thresholds: Positive min ({pos_thresh}) must be greater than Negative max ({neg_thresh}).",
None, None, None, None, None
)
df["sentiment_recategorised"] = recategorize(df["sentiment_1to10"], mode, pos_thresh, neg_thresh)
output_file = "bigbird_sentiment_results.csv"
df.to_csv(output_file, index=False)
if "plot1_path" not in globals():
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_1to10"], palette="Blues")
plt.title("Original 10-Class Sentiment Distribution")
plt.tight_layout()
global plot1_path
plot1_path = "original_dist.png"
plt.savefig(plot1_path)
plt.close()
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_recategorised"], palette="Set2")
plt.title(f"Recategorised Sentiment Distribution ({mode})")
plt.tight_layout()
plot2_path = "recategorised_dist.png"
plt.savefig(plot2_path)
plt.close()
if "plot3_path" not in globals():
plt.figure(figsize=(6, 4))
sns.histplot(df["confidence"], bins=20, color="skyblue", kde=True)
plt.title("Confidence Score Distribution")
plt.xlabel("Confidence")
plt.tight_layout()
global plot3_path
plot3_path = "confidence_dist.png"
plt.savefig(plot3_path)
plt.close()
preview = df[[text_column, "processed_text", "sentiment_1to10", "confidence", "sentiment_recategorised"]].head(10)
return f"β
Sentiment analysis complete. Used cache: {cached_file_name == file.name}", preview, output_file, plot1_path, plot2_path, plot3_path
def get_text_columns(file):
try:
df = pd.read_csv(file.name, nrows=1)
text_columns = df.select_dtypes(include='object').columns.tolist()
if not text_columns:
return gr.update(choices=[], value=None, label="β οΈ No text columns found!")
return gr.update(choices=text_columns, value=text_columns[0])
except Exception:
return gr.update(choices=[], value=None, label="β οΈ Error reading file")
with gr.Blocks() as app:
gr.Markdown("## βοΈ Sentiment analysis with Big Bird Flight 2")
gr.Markdown("**Citation:** Mat Roni, S. (2025). *Sentiment analysis with Big Bird Flight 2 on Gradio* (version 1.0) [software]. https://huggingface.co/spaces/pvaluedotone/bigbird-flight-2 DOI: https://doi.org/10.57967/hf/5780")
with gr.Row():
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
column_dropdown = gr.Dropdown(label="Select Text Column", choices=[], interactive=True)
file_input.change(get_text_columns, inputs=file_input, outputs=column_dropdown)
output_mode = gr.Radio(
label="Sentiment Output Type",
choices=["Original (1β10)", "Binary (Positive vs Negative)", "Ternary (Pos/Neu/Neg)"],
value="Original (1β10)",
interactive=True
)
pos_thresh_slider = gr.Slider(3, 10, value=7, step=1, label="Positive min", visible=False)
neg_thresh_slider = gr.Slider(1, 7, value=4, step=1, label="Negative max", visible=False)
auto_fix_checkbox = gr.Checkbox(label="Auto-correct thresholds if overlapping?", value=True)
cleaning_checkbox = gr.Checkbox(label="Apply Text Cleaning", value=True) # β
New toggle
def toggle_thresholds(mode):
show_pos = mode != "Original (1β10)"
show_neg = mode == "Ternary (Pos/Neu/Neg)"
return (
gr.update(visible=show_pos),
gr.update(visible=show_neg)
)
output_mode.change(toggle_thresholds, inputs=output_mode, outputs=[pos_thresh_slider, neg_thresh_slider])
run_button = gr.Button("Process sentiment")
status = gr.Textbox(label="Status")
df_output = gr.Dataframe(label="Sample Output (Top 10)")
file_result = gr.File(label="Download Full Results")
plot_orig = gr.Image(label="Original Sentiment Distribution")
plot_recat = gr.Image(label="Recategorised Sentiment Distribution")
plot_conf = gr.Image(label="Confidence Score Distribution")
run_button.click(
analyze_sentiment,
inputs=[
file_input, column_dropdown, output_mode,
pos_thresh_slider, neg_thresh_slider, auto_fix_checkbox,
cleaning_checkbox # β
New input
],
outputs=[status, df_output, file_result, plot_orig, plot_recat, plot_conf]
)
app.launch(share=True, debug=True)
|