Spaces:
Build error
Build error
Create DATA CATALOG
Browse files- pages/DATA CATALOG +425 -0
pages/DATA CATALOG
ADDED
|
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import numpy as np
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import sdv
|
| 7 |
+
from sdv.datasets.local import load_csvs
|
| 8 |
+
from sdv.metadata import MultiTableMetadata
|
| 9 |
+
from sdv.multi_table import HMASynthesizer
|
| 10 |
+
import time
|
| 11 |
+
import os
|
| 12 |
+
import gc
|
| 13 |
+
import warnings
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from sdv.metadata import SingleTableMetadata
|
| 16 |
+
import pyodbc
|
| 17 |
+
import google.generativeai as genai
|
| 18 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold
|
| 19 |
+
import textwrap
|
| 20 |
+
from streamlit_extras.stylable_container import stylable_container
|
| 21 |
+
from streamlit_extras.stateful_button import button
|
| 22 |
+
import json
|
| 23 |
+
from io import BytesIO
|
| 24 |
+
import pymssql
|
| 25 |
+
|
| 26 |
+
genai.configure(api_key='AIzaSyCeY8jSHKW6t0OSDRjc2VAfBvMunVrff2w')
|
| 27 |
+
genai_mod = genai.GenerativeModel(
|
| 28 |
+
model_name='models/gemini-pro'
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
st.set_page_config(page_title='DATA DISCOVERY', layout= 'wide')
|
| 32 |
+
st.markdown("""
|
| 33 |
+
<style>
|
| 34 |
+
|
| 35 |
+
/* Remove blank space at top and bottom */
|
| 36 |
+
.block-container {
|
| 37 |
+
padding-top: 2rem;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
/* Remove blank space at the center canvas */
|
| 41 |
+
.st-emotion-cache-z5fcl4 {
|
| 42 |
+
position: relative;
|
| 43 |
+
top: -62px;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
/* Make the toolbar transparent and the content below it clickable */
|
| 47 |
+
.st-emotion-cache-18ni7ap {
|
| 48 |
+
pointer-events: none;
|
| 49 |
+
background: rgb(255 255 255 / 0%)
|
| 50 |
+
}
|
| 51 |
+
.st-emotion-cache-zq5wmm {
|
| 52 |
+
pointer-events: auto;
|
| 53 |
+
background: rgb(255 255 255);
|
| 54 |
+
border-radius: 5px;
|
| 55 |
+
}
|
| 56 |
+
</style>
|
| 57 |
+
""", unsafe_allow_html=True)
|
| 58 |
+
def clear_cache():
|
| 59 |
+
if 'rdf' in st.session_state:
|
| 60 |
+
st.session_state.pop('rdf')
|
| 61 |
+
|
| 62 |
+
def create_er_diagram(df):
|
| 63 |
+
G = nx.DiGraph() # Directed graph
|
| 64 |
+
|
| 65 |
+
# Dictionary to hold table columns
|
| 66 |
+
table_columns = {}
|
| 67 |
+
|
| 68 |
+
# Add nodes and edges to the graph
|
| 69 |
+
for _, row in df.iterrows():
|
| 70 |
+
parent_table = row['PARENT TABLE']
|
| 71 |
+
child_table = row['CHILD TABLE']
|
| 72 |
+
parent_pk = row['PARENT TABLE RELATIONSHIP COLUMN']
|
| 73 |
+
child_fk = row['CHILD TABLE RELATIONSHIP COLUMN']
|
| 74 |
+
cardinality = row.get('CARDINALITY', '1:N')
|
| 75 |
+
|
| 76 |
+
# Add columns to tables
|
| 77 |
+
if parent_table not in table_columns:
|
| 78 |
+
table_columns[parent_table] = []
|
| 79 |
+
table_columns[parent_table].append(parent_pk)
|
| 80 |
+
|
| 81 |
+
if child_table not in table_columns:
|
| 82 |
+
table_columns[child_table] = []
|
| 83 |
+
table_columns[child_table].append(child_fk)
|
| 84 |
+
|
| 85 |
+
# Add nodes and edges
|
| 86 |
+
G.add_node(parent_table)
|
| 87 |
+
G.add_node(child_table)
|
| 88 |
+
G.add_edge(parent_table, child_table, label=f'{parent_pk} -> {child_fk}\n{cardinality}')
|
| 89 |
+
|
| 90 |
+
return G, table_columns
|
| 91 |
+
|
| 92 |
+
def draw_er_diagram(G, table_columns):
|
| 93 |
+
pos = nx.spring_layout(G, k=1.5, iterations=50) # Use a layout that spreads out nodes
|
| 94 |
+
|
| 95 |
+
plt.figure(figsize=(8, 8))
|
| 96 |
+
nx.draw(G, pos, with_labels=False, node_size=2500, node_color='lightblue', edge_color='gray', font_size=8, font_weight='bold', arrows=True)
|
| 97 |
+
|
| 98 |
+
# Draw node labels (table names in bold)
|
| 99 |
+
for node, (x, y) in pos.items():
|
| 100 |
+
plt.text(x, y + 0.13, node, fontsize=7, fontweight='bold', ha='center', va='center')
|
| 101 |
+
|
| 102 |
+
# Draw column names
|
| 103 |
+
for node, columns in table_columns.items():
|
| 104 |
+
x, y = pos[node]
|
| 105 |
+
column_text = '\n'.join(columns)
|
| 106 |
+
plt.text(x, y, column_text, fontsize=6, ha='center', va='center')
|
| 107 |
+
|
| 108 |
+
# Draw edge labels
|
| 109 |
+
edge_labels = nx.get_edge_attributes(G, 'label')
|
| 110 |
+
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=6)
|
| 111 |
+
st.subheader("Schematic Representation")
|
| 112 |
+
with st.container(border=True, height= 350):
|
| 113 |
+
st.pyplot(plt)
|
| 114 |
+
img_bytes = BytesIO()
|
| 115 |
+
plt.savefig(img_bytes, format='png')
|
| 116 |
+
img_bytes.seek(0)
|
| 117 |
+
return img_bytes
|
| 118 |
+
|
| 119 |
+
def cardinality(parent_df, child_df, parent_column, child_column):
|
| 120 |
+
# Check uniqueness of parent primary key
|
| 121 |
+
is_parent_unique = parent_df[parent_column].is_unique
|
| 122 |
+
|
| 123 |
+
# Check uniqueness of child foreign key
|
| 124 |
+
is_child_unique = child_df[child_column].is_unique
|
| 125 |
+
|
| 126 |
+
# Determine cardinality
|
| 127 |
+
if is_parent_unique and is_child_unique:
|
| 128 |
+
return '1:1'
|
| 129 |
+
elif is_parent_unique and not is_child_unique:
|
| 130 |
+
return '1:N'
|
| 131 |
+
elif not is_parent_unique and is_child_unique:
|
| 132 |
+
return 'N:1'
|
| 133 |
+
else:
|
| 134 |
+
return 'N:N'
|
| 135 |
+
|
| 136 |
+
#st.title('AUTOMATED DATA CATALOGUE')
|
| 137 |
+
st.subheader('SELECT SOURCE')
|
| 138 |
+
selectcol11, selectcol12 = st.columns(2)
|
| 139 |
+
with selectcol11:
|
| 140 |
+
select1=st.selectbox('SOURCE DB NAME',('DB_10001','Marcopolo_db'),key='dbname',index=None,placeholder='Select database name', on_change=clear_cache)
|
| 141 |
+
with selectcol12:
|
| 142 |
+
select2=st.selectbox('SOURCE SCHEMA NAME',('DBO','CLIENT'),key='SCHname',index=None,placeholder='Select schema name', on_change=clear_cache)
|
| 143 |
+
if select1 =='DB_10001' and select2 is not None:
|
| 144 |
+
with st.spinner("Loading Tables:"):
|
| 145 |
+
|
| 146 |
+
conn1 = pymssql.connect("Server=sql-ext-dev-uks-001.database.windows.net;"
|
| 147 |
+
"Database=sqldb-ext-dev-uks-001;"
|
| 148 |
+
"UID=dbadmin;"
|
| 149 |
+
"PWD=mYpa$$w0rD" )
|
| 150 |
+
|
| 151 |
+
query0_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' ORDER BY TABLE_NAME ASC"
|
| 152 |
+
st.session_state.tab_names_init=list(pd.read_sql_query(query0_1,con=conn1)['TABLE_NAME'])
|
| 153 |
+
|
| 154 |
+
table_selector=st.multiselect('SOURCE TABLE NAME',st.session_state.tab_names_init,default=None,placeholder='Select table(s) for automated data cataloging', on_change= clear_cache)
|
| 155 |
+
sample_selector=st.selectbox('SELECT SAMPLE SIZE',['100','10K','100K','1M','Full Table'],index=None,placeholder='Select sample size for the table(s)', on_change= clear_cache)
|
| 156 |
+
|
| 157 |
+
discover= button("Discover", key='discover')
|
| 158 |
+
|
| 159 |
+
if discover:
|
| 160 |
+
if sample_selector=='100':
|
| 161 |
+
count="top 100"
|
| 162 |
+
elif sample_selector=='10K':
|
| 163 |
+
count="top 10000"
|
| 164 |
+
elif sample_selector=='100K':
|
| 165 |
+
count="top 100000"
|
| 166 |
+
elif sample_selector=='1M':
|
| 167 |
+
count="top 1000000"
|
| 168 |
+
else:
|
| 169 |
+
count=""
|
| 170 |
+
|
| 171 |
+
query1_1=f"select * from INFORMATION_SCHEMA.TABLES where TABLE_SCHEMA='{select2}' and TABLE_NAME in ("+(', '.join(f"'{table}'" for table in table_selector))+") ORDER BY TABLE_NAME ASC"
|
| 172 |
+
st.session_state.tab_names=list(pd.read_sql_query(query1_1,con=conn1)['TABLE_NAME'])
|
| 173 |
+
st.session_state.dataframes = {}
|
| 174 |
+
st.session_state.col_names = []
|
| 175 |
+
for tab in st.session_state.tab_names:
|
| 176 |
+
query2_2= "select "+count+" * from ["+select2+"].["+tab+"]"
|
| 177 |
+
st.session_state.dataframes[f'{tab}'] = pd.read_sql_query(query2_2,con=conn1)
|
| 178 |
+
st.session_state.col_names = st.session_state.col_names + list(st.session_state.dataframes[f'{tab}'].columns)
|
| 179 |
+
#st.session_state.data_load = "Yes"
|
| 180 |
+
|
| 181 |
+
tab_names = st.session_state.tab_names
|
| 182 |
+
dataframes = st.session_state.dataframes
|
| 183 |
+
col_names = st.session_state.col_names
|
| 184 |
+
metadata = MultiTableMetadata()
|
| 185 |
+
metadata.detect_from_dataframes(
|
| 186 |
+
data= st.session_state.dataframes
|
| 187 |
+
)
|
| 188 |
+
multi_python_dict = metadata.to_dict()
|
| 189 |
+
|
| 190 |
+
st.markdown(f"System has ingested :orange[**{str(len(tab_names))} tables**] from the source. Please proceed with the discovery.")
|
| 191 |
+
#st.subheader("DATA CATALOGUE")
|
| 192 |
+
tab1, tab2= st.tabs(["Explain Tables", "Show Relationships"])
|
| 193 |
+
def view_callback():
|
| 194 |
+
st.session_state.tdet = False
|
| 195 |
+
with tab1:
|
| 196 |
+
#st.write(python_dict)
|
| 197 |
+
st.session_state.table_list= pd.DataFrame(tab_names,columns=['TABLE NAME'])
|
| 198 |
+
containter_length = (len(st.session_state.table_list) + 1)*35
|
| 199 |
+
tab_names_shown= list(st.session_state.table_list['TABLE NAME'].values)
|
| 200 |
+
tabs2= st.tabs(tab_names_shown)
|
| 201 |
+
for i, tab in enumerate(tabs2):
|
| 202 |
+
with tab:
|
| 203 |
+
with st.container(height= 400, border=True):
|
| 204 |
+
cole1,cole2=st.columns([1,1.5])
|
| 205 |
+
with cole1:
|
| 206 |
+
conn = pymssql.connect("Driver={ODBC Driver 17 for SQL Server};"
|
| 207 |
+
"Server=sql-ext-dev-uks-001.database.windows.net;"
|
| 208 |
+
"Database=sqldb-ext-dev-uks-001;"
|
| 209 |
+
"UID=dbadmin;"
|
| 210 |
+
"PWD=mYpa$$w0rD" )
|
| 211 |
+
|
| 212 |
+
table_selector= tab_names_shown[i]
|
| 213 |
+
if table_selector is not None:
|
| 214 |
+
query2="select "+count+" * from [dbo].["+table_selector+"]"
|
| 215 |
+
#df = pd.read_sql_query(query2,con=conn)
|
| 216 |
+
df = st.session_state.dataframes[table_selector]
|
| 217 |
+
selected_df = pd.DataFrame()
|
| 218 |
+
for col in df.columns:
|
| 219 |
+
# Filter non-null and non-blank values
|
| 220 |
+
non_null_values = df[col][df[col] != ''].dropna().astype(str).str.strip()
|
| 221 |
+
|
| 222 |
+
# Select up to 10 values (or fewer if less than 10 non-null values)
|
| 223 |
+
selected_values = list(non_null_values[:10])
|
| 224 |
+
selected_values = selected_values + [""] * (10 - len(selected_values))
|
| 225 |
+
# Add selected values to the new dataframe
|
| 226 |
+
selected_df[col] = selected_values
|
| 227 |
+
#st.dataframe(selected_df)
|
| 228 |
+
null_columns = [col for col in selected_df.columns if selected_df.apply(lambda x: x == '')[col].nunique() > 1]
|
| 229 |
+
null_mes= "**The Following columns have very few records(less than 10). You might exclude them (if they are redundant) for better table discovery:** \n\n"
|
| 230 |
+
for col in null_columns[:-1]:
|
| 231 |
+
null_mes += f":orange[**{col}**]" + ', '
|
| 232 |
+
for collast in null_columns[-1:]:
|
| 233 |
+
if len(null_columns)> 1:
|
| 234 |
+
null_mes += '**and** ' + f":orange[**{collast}**]"
|
| 235 |
+
else:
|
| 236 |
+
null_mes += f":orange[**{collast}**]"
|
| 237 |
+
|
| 238 |
+
if len(null_columns) != 0:
|
| 239 |
+
with st.expander("🛈 Potential redundant Columns Found in Terms of Data Completeness:", expanded= True):
|
| 240 |
+
st.markdown(null_mes)
|
| 241 |
+
inf_filter= st.multiselect('Select Incomplete and Insignificant Columns to exclude:', list(null_columns))
|
| 242 |
+
run = st.button('Check', key= f"{tab_names_shown[i]}")
|
| 243 |
+
else:
|
| 244 |
+
st.success("No redundant Columns Found in Terms of Data Completeness")
|
| 245 |
+
inf_filter= None
|
| 246 |
+
run = False
|
| 247 |
+
|
| 248 |
+
if inf_filter is not None:
|
| 249 |
+
df.drop(columns=inf_filter, inplace=True)
|
| 250 |
+
selected_df.drop(columns=inf_filter, inplace=True)
|
| 251 |
+
|
| 252 |
+
if run or len(null_columns) == 0:
|
| 253 |
+
main_list=df.columns.to_list()
|
| 254 |
+
sub_list=['ID','LOADID','FILE_NAME']
|
| 255 |
+
if any(main_list[i:i+len(sub_list)] == sub_list for i in range(len(main_list) - len(sub_list) + 1)):
|
| 256 |
+
df=df.drop(['ID','LOADID','FILE_NAME'],axis=1)
|
| 257 |
+
conn.close()
|
| 258 |
+
sin_metadata = SingleTableMetadata()
|
| 259 |
+
sin_metadata.detect_from_dataframe(df)
|
| 260 |
+
python_dict = sin_metadata.to_dict()
|
| 261 |
+
if f'cont_{table_selector}' not in st.session_state:
|
| 262 |
+
with st.spinner("Processing Table"):
|
| 263 |
+
# Create a GenerativeModel instance
|
| 264 |
+
genai_mod = genai.GenerativeModel(
|
| 265 |
+
model_name='models/gemini-pro'
|
| 266 |
+
)
|
| 267 |
+
if 'primary_key' in python_dict:
|
| 268 |
+
primary_key = python_dict['primary_key']
|
| 269 |
+
else:
|
| 270 |
+
primary_key = "Could Not be Identified"
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
story = f""" Details of the table:
|
| 274 |
+
table columns: {str(list(df.columns))}
|
| 275 |
+
column datatypes: {str(df.dtypes.to_string())}
|
| 276 |
+
table sample data: {selected_df.head(10).to_string()}
|
| 277 |
+
"""
|
| 278 |
+
response = genai_mod.generate_content(textwrap.dedent("""
|
| 279 |
+
You are a Data Migration expert. You can analyze and understand any table/data/ Please return a narration about the data. The narration should Include primary key name(if any) and a intellectual guess about the table schema. The data can be any kind of generic data. you have to guess the object name/class name/schema name etc. of that data. Don't add unnecessary details. Strictly stick to the informations provided only.
|
| 280 |
+
Important: Please consider All fields are mandetorily during your analysis. Explain all fields precisely without unnecessary and irrelevant information. NO NEED TO PROVIDE THE SAMPLE DATA AGAIN.
|
| 281 |
+
|
| 282 |
+
Here is the table details:
|
| 283 |
+
|
| 284 |
+
""") + story + f"The Primary Key is:{primary_key}" ,
|
| 285 |
+
safety_settings={
|
| 286 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
| 287 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
| 288 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
| 289 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
| 290 |
+
})
|
| 291 |
+
st.session_state[f'cont_{table_selector}'] = response.text
|
| 292 |
+
|
| 293 |
+
st.markdown(st.session_state[f'cont_{table_selector}'])
|
| 294 |
+
with cole2:
|
| 295 |
+
st.markdown("**DATA PREVIEW**")
|
| 296 |
+
st.dataframe(df, use_container_width= True)
|
| 297 |
+
|
| 298 |
+
with tab2:
|
| 299 |
+
metadata1 = MultiTableMetadata()
|
| 300 |
+
metadata1.detect_from_dataframes(
|
| 301 |
+
data= st.session_state.dataframes
|
| 302 |
+
)
|
| 303 |
+
multi_python_dict1 = metadata1.to_dict()
|
| 304 |
+
rlist1=multi_python_dict1['relationships']
|
| 305 |
+
rdf=pd.DataFrame(columns=['PARENT TABLE','CHILD TABLE','PARENT TABLE RELATIONSHIP COLUMN','CHILD TABLE RELATIONSHIP COLUMN','CARDINALITY'])
|
| 306 |
+
for i in range(len(rlist1)):
|
| 307 |
+
rlist=rlist1[i]
|
| 308 |
+
nrow=pd.DataFrame({'PARENT TABLE':rlist['parent_table_name'],'CHILD TABLE':rlist['child_table_name'],'PARENT TABLE RELATIONSHIP COLUMN':rlist['parent_primary_key'],'CHILD TABLE RELATIONSHIP COLUMN':rlist['child_foreign_key']},index=[i])
|
| 309 |
+
rdf=pd.concat([rdf,nrow],ignore_index=True)
|
| 310 |
+
|
| 311 |
+
rdf['CARDINALITY'] = rdf.apply(
|
| 312 |
+
lambda row: cardinality(
|
| 313 |
+
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
| 314 |
+
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
| 315 |
+
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
| 316 |
+
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
if 'rdf' not in st.session_state:
|
| 320 |
+
st.session_state.rdf = rdf
|
| 321 |
+
|
| 322 |
+
edited_map_df = st.data_editor(
|
| 323 |
+
st.session_state.rdf,
|
| 324 |
+
column_config={
|
| 325 |
+
"PARENT TABLE": st.column_config.SelectboxColumn(
|
| 326 |
+
"Available Parent Table",
|
| 327 |
+
width="medium",
|
| 328 |
+
options=tab_names,
|
| 329 |
+
required=True,
|
| 330 |
+
),
|
| 331 |
+
"CHILD TABLE": st.column_config.SelectboxColumn(
|
| 332 |
+
"Available Child Table",
|
| 333 |
+
width="medium",
|
| 334 |
+
options=tab_names,
|
| 335 |
+
required=True,
|
| 336 |
+
),
|
| 337 |
+
"PARENT TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
| 338 |
+
"Available Parent Table Relationship Column",
|
| 339 |
+
width="medium",
|
| 340 |
+
options=col_names,
|
| 341 |
+
required=True,
|
| 342 |
+
),
|
| 343 |
+
"CHILD TABLE RELATIONSHIP COLUMN": st.column_config.SelectboxColumn(
|
| 344 |
+
"Available Child Table Relationship Column",
|
| 345 |
+
width="medium",
|
| 346 |
+
options=col_names,
|
| 347 |
+
required=True,
|
| 348 |
+
),
|
| 349 |
+
"CARDINALITY": st.column_config.SelectboxColumn(
|
| 350 |
+
"Cardinality",
|
| 351 |
+
width="medium",
|
| 352 |
+
options=['1:1','1:N','N:1','N:N'],
|
| 353 |
+
required=True,
|
| 354 |
+
)
|
| 355 |
+
},
|
| 356 |
+
hide_index=True,
|
| 357 |
+
num_rows = 'dynamic',
|
| 358 |
+
use_container_width = True
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
for i,row in edited_map_df.iterrows():
|
| 362 |
+
pcolchecklist = st.session_state.dataframes[str(row['PARENT TABLE'])].columns
|
| 363 |
+
ccolchecklist = st.session_state.dataframes[str(row['CHILD TABLE'])].columns
|
| 364 |
+
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
| 365 |
+
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
| 366 |
+
match = [val for val in pvals if val in cvals]
|
| 367 |
+
#st.write(match)
|
| 368 |
+
if row['PARENT TABLE RELATIONSHIP COLUMN'] not in pcolchecklist:
|
| 369 |
+
st.error(f"{row['PARENT TABLE RELATIONSHIP COLUMN']} does not belong to {row['PARENT TABLE']}")
|
| 370 |
+
else:
|
| 371 |
+
pass
|
| 372 |
+
if row['CHILD TABLE RELATIONSHIP COLUMN'] not in ccolchecklist:
|
| 373 |
+
st.error(f"{row['CHILD TABLE RELATIONSHIP COLUMN']} does not belong to {row['CHILD TABLE']}")
|
| 374 |
+
else:
|
| 375 |
+
pass
|
| 376 |
+
if (row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist):
|
| 377 |
+
pvals= list(st.session_state.dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)
|
| 378 |
+
cvals= list(st.session_state.dataframes[str(row['CHILD TABLE'])][row['CHILD TABLE RELATIONSHIP COLUMN']].values)
|
| 379 |
+
match = [val for val in pvals if val in cvals]
|
| 380 |
+
if match == []:
|
| 381 |
+
st.error(f"The Joining Condition Between column: {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} and column: {row['CHILD TABLE RELATIONSHIP COLUMN']} from Table: {row['CHILD TABLE']} does not yield any record. ")
|
| 382 |
+
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and (match != []):
|
| 383 |
+
# primary_check = len(list(dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].values)) == dataframes[str(row['PARENT TABLE'])][row['PARENT TABLE RELATIONSHIP COLUMN']].nunique()
|
| 384 |
+
# if primary_check:
|
| 385 |
+
# pass
|
| 386 |
+
# else:
|
| 387 |
+
# st.error(f"The Column {row['PARENT TABLE RELATIONSHIP COLUMN']} from Table: {row['PARENT TABLE']} has duplicate records and hence can not be considered as Primary Key.")
|
| 388 |
+
pass
|
| 389 |
+
|
| 390 |
+
add = st.button("Add Relationship", key='add')
|
| 391 |
+
if add:
|
| 392 |
+
if ((row['PARENT TABLE RELATIONSHIP COLUMN'] in pcolchecklist) and (row['CHILD TABLE RELATIONSHIP COLUMN'] in ccolchecklist)) and ((match != [])):
|
| 393 |
+
add_df = edited_map_df
|
| 394 |
+
else:
|
| 395 |
+
add_df = st.session_state.rdf
|
| 396 |
+
else:
|
| 397 |
+
add_df = st.session_state.rdf
|
| 398 |
+
|
| 399 |
+
add_df['CARDINALITY'] = add_df.apply(
|
| 400 |
+
lambda row: cardinality(
|
| 401 |
+
st.session_state.dataframes[str(row['PARENT TABLE'])],
|
| 402 |
+
st.session_state.dataframes[str(row['CHILD TABLE'])],
|
| 403 |
+
str(row['PARENT TABLE RELATIONSHIP COLUMN']),
|
| 404 |
+
str(row['CHILD TABLE RELATIONSHIP COLUMN'])),axis=1)
|
| 405 |
+
|
| 406 |
+
st.session_state.add_df = add_df
|
| 407 |
+
edited_map_df = st.session_state.add_df
|
| 408 |
+
|
| 409 |
+
rel_tabs = list(add_df['PARENT TABLE'].values) + list(add_df['CHILD TABLE'].values)
|
| 410 |
+
unrel_tabs = [tab for tab in tab_names if tab not in rel_tabs]
|
| 411 |
+
st.info(f"""Unrelated tables due to undetected pattern: {str(unrel_tabs).replace("[","").replace("]","")}""")
|
| 412 |
+
|
| 413 |
+
G, table_columns = create_er_diagram(st.session_state.add_df)
|
| 414 |
+
img_bytes= draw_er_diagram(G, table_columns)
|
| 415 |
+
col21, col22= st.columns([1,8])
|
| 416 |
+
with col21:
|
| 417 |
+
if st.button("Regenerate"):
|
| 418 |
+
st.rerun()
|
| 419 |
+
with col22:
|
| 420 |
+
st.download_button(
|
| 421 |
+
label="Download ER Diagram",
|
| 422 |
+
data=img_bytes,
|
| 423 |
+
file_name="er_diagram.png",
|
| 424 |
+
mime="image/png"
|
| 425 |
+
)
|