running space
Browse files
app.py
CHANGED
|
@@ -6,49 +6,33 @@ from io import BytesIO
|
|
| 6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
| 7 |
|
| 8 |
device = "cpu"
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import gradio as gr
|
| 15 |
|
| 16 |
-
def generate_txt2img(
|
| 17 |
-
return pipe(prompt
|
| 18 |
-
def generate_img2img(
|
| 19 |
-
image = Image.fromarray(
|
| 20 |
-
|
| 21 |
-
return pipe2(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, image=image, strength=strength, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
|
| 22 |
|
| 23 |
with gr.Blocks() as demo:
|
| 24 |
with gr.Tab("Text2Image"):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
num_inf_steps = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
|
| 30 |
-
with gr.Row():
|
| 31 |
-
with gr.Column():
|
| 32 |
-
width = gr.Slider(label="Width(pixels)", minimum=256, maximum=1024, value=512, step=1)
|
| 33 |
-
with gr.Column():
|
| 34 |
-
height = gr.Slider(label="Height(pixels)", minimum=256, maximum=1024, value=512, step=1)
|
| 35 |
-
g_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
|
| 36 |
-
num_imgs = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
|
| 37 |
-
btn = gr.Button("Generate")
|
| 38 |
-
out_img = gr.Gallery(preview=True)
|
| 39 |
-
btn.click(fn=generate_txt2img, inputs=[inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs], outputs=[out_img])
|
| 40 |
with gr.Tab("Image2Image"):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
g_scale2 = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
|
| 48 |
-
num_imgs2 = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
|
| 49 |
-
strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=0.8, step=0.1)
|
| 50 |
-
btn2 = gr.Button("Generate")
|
| 51 |
-
out_img2 = gr.Gallery(preview=True)
|
| 52 |
-
btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2, inp_neg2, num_inf_steps2, g_scale2, num_imgs2, strength], outputs=[out_img2])
|
| 53 |
-
|
| 54 |
demo.launch(debug=True)
|
|
|
|
| 6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
| 7 |
|
| 8 |
device = "cpu"
|
| 9 |
+
#model_path = "weights"
|
| 10 |
+
#model_id_or_path = "runwayml/stable-diffusion-v1-5"
|
| 11 |
|
| 12 |
+
model_id = "rikdas/weights"
|
| 13 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
|
| 14 |
+
|
| 15 |
+
pipe2 = StableDiffusionImg2ImgPipeline.from_pretrained(model_id).to(device)
|
| 16 |
|
| 17 |
import gradio as gr
|
| 18 |
|
| 19 |
+
def generate_txt2img(prompt):
|
| 20 |
+
return pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
|
| 21 |
+
def generate_img2img(img, prompt):
|
| 22 |
+
image = Image.fromarray(img)
|
| 23 |
+
return pipe2(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5).images[0]
|
|
|
|
| 24 |
|
| 25 |
with gr.Blocks() as demo:
|
| 26 |
with gr.Tab("Text2Image"):
|
| 27 |
+
inp_txt = gr.Text(showlabel=False, placeholder="Enter your prompt here...")
|
| 28 |
+
btn = gr.Button("Generate")
|
| 29 |
+
out_img = gr.Image()
|
| 30 |
+
btn.click(fn=generate_txt2img, inputs=[inp_txt], outputs=[out_img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
with gr.Tab("Image2Image"):
|
| 32 |
+
inp_img = gr.Image()
|
| 33 |
+
inp_txt2 = gr.Text(showlabel=False,placeholder="Enter your prompt here...")
|
| 34 |
+
btn2 = gr.Button("Generate")
|
| 35 |
+
out_img2 = gr.Image()
|
| 36 |
+
btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2], outputs=[out_img2])
|
| 37 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
demo.launch(debug=True)
|