hbredin commited on
Commit
7113703
·
verified ·
1 Parent(s): 9adcf38

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -17,22 +17,22 @@ Training is made possible thanks to [GENCI](https://www.genci.fr/) on the [**Jea
17
 
18
  | Benchmark | [v2.1](https://hf.co/pyannote/speaker-diarization-2.1) | [v3.1](https://hf.co/pyannote/speaker-diarization-3.1) | [pyannoteAI](https://www.pyannote.ai) |
19
  | ---------------------- | ------ | ------ | --------- |
20
- | [AISHELL-4](https://arxiv.org/abs/2104.03603) | 14.1 | 12.2 | 11.2 |
21
- | [AliMeeting](https://www.openslr.org/119/) (channel 1) | 27.4 | 24.4 | 19.3 |
22
- | [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (IHM) | 18.9 | 18.8 | 15.8 |
23
- | [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (SDM) | 27.1 | 22.4 | 19.3 |
24
- | [AVA-AVD](https://arxiv.org/abs/2111.14448) | 66.3 | 50.0 | 44.8 |
25
- | [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) ([part 2](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1)) | 31.6 | 28.4 | 19.8 |
26
- | [DIHARD 3](https://catalog.ldc.upenn.edu/LDC2022S14) ([full](https://arxiv.org/abs/2012.01477)) | 26.9 | 21.7 | 16.8 |
27
  | [Earnings21](https://github.com/revdotcom/speech-datasets) | 17.0 | 9.4 | 9.1 |
28
- | [Ego4D](https://arxiv.org/abs/2110.07058) (dev.) | 61.5 | 51.2 | 44.0 |
29
- | [MSDWild](https://github.com/X-LANCE/MSDWILD) | 32.8 | 25.3 | 19.8 |
30
- | [RAMC](https://www.openslr.org/123/) | 22.5 | 22.2 | 11.1 |
31
- | [REPERE](https://www.islrn.org/resources/360-758-359-485-0/) (phase2) | 8.2 | 7.8 | 7.6 |
32
- | [VoxConverse](https://github.com/joonson/voxconverse) (v0.3) | 11.2 | 11.3 | 9.8 |
33
  [Diarization error rate](http://pyannote.github.io/pyannote-metrics/reference.html#diarization) (in %)
34
 
35
  Using high-end NVIDIA hardware,
36
  * [v2.1](https://hf.co/pyannote/speaker-diarization-2.1) takes around 1m30s to process 1h of audio
37
  * [v3.1](https://hf.co/pyannote/speaker-diarization-3.1) takes around 1m20s to process 1h of audio
38
- * On-premise [pyannoteAI](https://www.pyannote.ai) takes less than 30s to process 1h of audio
 
17
 
18
  | Benchmark | [v2.1](https://hf.co/pyannote/speaker-diarization-2.1) | [v3.1](https://hf.co/pyannote/speaker-diarization-3.1) | [pyannoteAI](https://www.pyannote.ai) |
19
  | ---------------------- | ------ | ------ | --------- |
20
+ | [AISHELL-4](https://arxiv.org/abs/2104.03603) | 14.1 | 12.2 | 11.9 |
21
+ | [AliMeeting](https://www.openslr.org/119/) (channel 1) | 27.4 | 24.4 | 16.6 |
22
+ | [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (IHM) | 18.9 | 18.8 | 13.2 |
23
+ | [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (SDM) | 27.1 | 22.4 | 15.8 |
24
+ | [AVA-AVD](https://arxiv.org/abs/2111.14448) | 66.3 | 50.0 | 39.9 |
25
+ | [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) ([part 2](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1)) | 31.6 | 28.4 | 17.8 |
26
+ | [DIHARD 3](https://catalog.ldc.upenn.edu/LDC2022S14) ([full](https://arxiv.org/abs/2012.01477)) | 26.9 | 21.7 | 15.7 |
27
  | [Earnings21](https://github.com/revdotcom/speech-datasets) | 17.0 | 9.4 | 9.1 |
28
+ | [Ego4D](https://arxiv.org/abs/2110.07058) (dev.) | 61.5 | 51.2 | 42.8 |
29
+ | [MSDWild](https://github.com/X-LANCE/MSDWILD) | 32.8 | 25.3 | 17.7 |
30
+ | [RAMC](https://www.openslr.org/123/) | 22.5 | 22.2 | 10.6 |
31
+ | [REPERE](https://www.islrn.org/resources/360-758-359-485-0/) (phase2) | 8.2 | 7.8 | 7.3 |
32
+ | [VoxConverse](https://github.com/joonson/voxconverse) (v0.3) | 11.2 | 11.3 | 8.9 |
33
  [Diarization error rate](http://pyannote.github.io/pyannote-metrics/reference.html#diarization) (in %)
34
 
35
  Using high-end NVIDIA hardware,
36
  * [v2.1](https://hf.co/pyannote/speaker-diarization-2.1) takes around 1m30s to process 1h of audio
37
  * [v3.1](https://hf.co/pyannote/speaker-diarization-3.1) takes around 1m20s to process 1h of audio
38
+ * On-premise [pyannoteAI](https://www.pyannote.ai) takes less than 20s to process 1h of audio