Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load model and processor
|
8 |
+
mix_model_id = "google/paligemma-3b-mix-224"
|
9 |
+
mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id)
|
10 |
+
mix_processor = AutoProcessor.from_pretrained(mix_model_id)
|
11 |
+
|
12 |
+
# Define function to extract frames from the video
|
13 |
+
def extract_frames(video_path, frame_interval=1):
|
14 |
+
# Open the video file
|
15 |
+
vidcap = cv2.VideoCapture(video_path)
|
16 |
+
frames = []
|
17 |
+
success, image = vidcap.read()
|
18 |
+
count = 0
|
19 |
+
|
20 |
+
while success:
|
21 |
+
# Capture a frame at the specified interval
|
22 |
+
if count % frame_interval == 0:
|
23 |
+
frames.append(image)
|
24 |
+
success, image = vidcap.read()
|
25 |
+
count += 1
|
26 |
+
|
27 |
+
vidcap.release()
|
28 |
+
return frames
|
29 |
+
|
30 |
+
# Define function to generate captions for a video
|
31 |
+
def process_video(video, prompt):
|
32 |
+
# Use video directly as the path (video is passed as a string)
|
33 |
+
frames = extract_frames(video, frame_interval=10) # Extract frames at intervals
|
34 |
+
|
35 |
+
captions = []
|
36 |
+
|
37 |
+
for frame in frames:
|
38 |
+
# Convert frame to PIL Image and process it (assuming mix_processor handles PIL Image)
|
39 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
40 |
+
inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt")
|
41 |
+
|
42 |
+
try:
|
43 |
+
# Generate output from the model for each frame
|
44 |
+
output = mix_model.generate(**inputs, max_new_tokens=20)
|
45 |
+
|
46 |
+
# Decode and store the output for the frame
|
47 |
+
decoded_output = mix_processor.decode(output[0], skip_special_tokens=True)
|
48 |
+
captions.append(decoded_output[len(prompt):]) # Remove prompt part from the output
|
49 |
+
except IndexError as e:
|
50 |
+
print(f"IndexError: {e}")
|
51 |
+
captions.append("Error processing frame")
|
52 |
+
|
53 |
+
# Combine all frame captions into a coherent video description
|
54 |
+
return " ".join(captions)
|
55 |
+
|
56 |
+
# Define Gradio interface for video captioning
|
57 |
+
inputs = [
|
58 |
+
gr.Video(label="Upload Video"),
|
59 |
+
gr.Textbox(label="Prompt", placeholder="Enter your question")
|
60 |
+
]
|
61 |
+
outputs = gr.Textbox(label="Generated Caption")
|
62 |
+
|
63 |
+
# Create the Gradio app for video captioning
|
64 |
+
demo = gr.Interface(fn=process_video, inputs=inputs, outputs=outputs, title="Video Captioning with Mix PaliGemma Model",
|
65 |
+
description="Upload a video and get captions based on your prompt.")
|
66 |
+
|
67 |
+
# Launch the app
|
68 |
+
demo.launch(debug=True)
|