|
import torch |
|
|
|
model = torch.hub.load('facebookresearch/pytorchvideo', 'slow_r50', pretrained=True) |
|
import json |
|
import urllib |
|
from pytorchvideo.data.encoded_video import EncodedVideo |
|
|
|
from torchvision.transforms import Compose, Lambda |
|
from torchvision.transforms._transforms_video import ( |
|
CenterCropVideo, |
|
NormalizeVideo, |
|
) |
|
from pytorchvideo.transforms import ( |
|
ApplyTransformToKey, |
|
ShortSideScale, |
|
UniformTemporalSubsample |
|
) |
|
|
|
import gradio as gr |
|
|
|
device = "cpu" |
|
model = model.eval() |
|
model = model.to(device) |
|
json_url = "https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json" |
|
json_filename = "kinetics_classnames.json" |
|
try: urllib.URLopener().retrieve(json_url, json_filename) |
|
except: urllib.request.urlretrieve(json_url, json_filename) |
|
with open(json_filename, "r") as f: |
|
kinetics_classnames = json.load(f) |
|
|
|
|
|
kinetics_id_to_classname = {} |
|
for k, v in kinetics_classnames.items(): |
|
kinetics_id_to_classname[v] = str(k).replace('"', "") |
|
side_size = 256 |
|
mean = [0.45, 0.45, 0.45] |
|
std = [0.225, 0.225, 0.225] |
|
crop_size = 256 |
|
num_frames = 8 |
|
sampling_rate = 8 |
|
frames_per_second = 30 |
|
|
|
|
|
transform = ApplyTransformToKey( |
|
key="video", |
|
transform=Compose( |
|
[ |
|
UniformTemporalSubsample(num_frames), |
|
Lambda(lambda x: x/255.0), |
|
NormalizeVideo(mean, std), |
|
ShortSideScale( |
|
size=side_size |
|
), |
|
CenterCropVideo(crop_size=(crop_size, crop_size)) |
|
] |
|
), |
|
) |
|
|
|
|
|
clip_duration = (num_frames * sampling_rate)/frames_per_second |
|
url_link = "https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4" |
|
video_path = 'archery.mp4' |
|
try: urllib.URLopener().retrieve(url_link, video_path) |
|
except: urllib.request.urlretrieve(url_link, video_path) |
|
|
|
|
|
def inference(in_vid): |
|
start_sec = 0 |
|
end_sec = start_sec + clip_duration |
|
|
|
|
|
video = EncodedVideo.from_path(in_vid) |
|
|
|
|
|
video_data = video.get_clip(start_sec=start_sec, end_sec=end_sec) |
|
|
|
|
|
video_data = transform(video_data) |
|
|
|
|
|
inputs = video_data["video"] |
|
inputs = inputs.to(device) |
|
|
|
preds = model(inputs[None, ...]) |
|
|
|
|
|
post_act = torch.nn.Softmax(dim=1) |
|
preds = post_act(preds) |
|
pred_classes = preds.topk(k=5).indices[0] |
|
|
|
|
|
pred_class_names = [kinetics_id_to_classname[int(i)] for i in pred_classes] |
|
return "%s" % ", ".join(pred_class_names) |
|
|
|
inputs = gr.inputs.Video(label="Input Video") |
|
outputs = gr.outputs.Textbox(label="Top 5 predicted labels") |
|
|
|
title = "3D RESNET" |
|
description = "demo for 3D RESNET, Resnet Style Video classification networks pretrained on the Kinetics 400 dataset. To use it, simply upload your video, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1812.03982'>SlowFast Networks for Video Recognition</a> | <a href='https://github.com/facebookresearch/pytorchvideo'>Github Repo</a></p>" |
|
|
|
examples = [ |
|
['archery.mp4'] |
|
] |
|
|
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(enable_queue=True) |