Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load the pre-trained model and tokenizer
|
6 |
+
model_name = "Helsinki-NLP/opus-mt-en-ur"
|
7 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
8 |
+
model = MarianMTModel.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define the translation function
|
11 |
+
def translate_english_to_urdu(text):
|
12 |
+
# Tokenize the input text
|
13 |
+
tokenized_text = tokenizer.prepare_seq2seq_batch([text], return_tensors="pt")
|
14 |
+
|
15 |
+
# Perform the translation
|
16 |
+
translated_tokens = model.generate(**tokenized_text)
|
17 |
+
|
18 |
+
# Decode the translated tokens to a string
|
19 |
+
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
20 |
+
|
21 |
+
return translated_text
|
22 |
+
|
23 |
+
# Create a Gradio interface
|
24 |
+
def gradio_translator(input_text):
|
25 |
+
# Translate the input text
|
26 |
+
translated_text = translate_english_to_urdu(input_text)
|
27 |
+
return translated_text
|
28 |
+
|
29 |
+
# Define the Gradio interface
|
30 |
+
interface = gr.Interface(
|
31 |
+
fn=gradio_translator, # Function to call
|
32 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter English text here..."), # Input component
|
33 |
+
outputs=gr.Textbox(lines=2, placeholder="Urdu translation will appear here..."), # Output component
|
34 |
+
title="English to Urdu Translator", # Title of the interface
|
35 |
+
description="Translate English text to Urdu using the Helsinki-NLP/opus-mt-en-ur model.",
|
36 |
+
examples=[
|
37 |
+
["Hello, how are you?"],
|
38 |
+
["What is your name?"],
|
39 |
+
["I love programming."]
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
# Launch the Gradio interface
|
44 |
+
interface.launch()
|