Spaces:
Running
Running
import gradio as gr | |
import matplotlib.pyplot as plt | |
def plot_forecast(num_param, precision, grad_ckpt, batch_size, seq_len): | |
# Convert number (input as B) | |
num_param = float(num_param) * 1e9 | |
# Convert precision to bytes | |
precision = {"float32": 4, "float16": 2, "bfloat16": 2}[precision] | |
# Model Parameters: N×precision | |
y1 = num_param * precision / 1e9 | |
# Optimizer States: 2×N×precision | |
y2 = 2 * num_param * precision / 1e9 | |
# Activations: B×Sequence Length×K×precision | |
K = 4.6894e-4 * num_param + 1.8494e6 | |
y3 = batch_size * seq_len * K * precision / 1e9 | |
if grad_ckpt: | |
y3 /= 5 | |
# Gradients: N×precision | |
y4 = num_param * precision / 1e9 | |
# Optimizer intermediates: N×precision | |
y5 = num_param * precision / 1e9 | |
# Calculate total memory | |
total_memory = y1 + y2 + max(y3, y4 + y5) | |
fig = plt.figure(figsize=(4, 4)) | |
ax = fig.add_subplot(111) | |
# Create stacked bars | |
bar_width = 0.5 | |
ax.bar(0, y1, width=bar_width, color="r") | |
ax.bar(0, y2, bottom=y1, width=bar_width, color="b") | |
ax.bar(-bar_width / 4, y3, bottom=y1 + y2, width=bar_width / 2, color="g") | |
ax.bar(bar_width / 4, y4, bottom=y1 + y2, width=bar_width / 2, color="y") | |
ax.bar(bar_width / 4, y5, bottom=y1 + y2 + y4, width=bar_width / 2, color="c") | |
# Add text labels inside the bars | |
ax.text(0, y1 / 2, f"Model Parameters ({y1:.1f} GB)", ha="center", va="center", color="white", fontweight="bold") | |
ax.text( | |
0, y1 + y2 / 2, f"Optimizer States ({y2:.1f} GB)", ha="center", va="center", color="white", fontweight="bold" | |
) | |
ax.text( | |
-bar_width / 4, | |
y1 + y2 + y3 / 2, | |
f"Activations\n({y3:.1f} GB)", | |
ha="center", | |
va="center", | |
color="white", | |
fontweight="bold", | |
) | |
ax.text( | |
bar_width / 4, | |
y1 + y2 + y4 / 2, | |
f"Gradients\n({y4:.1f} GB)", | |
ha="center", | |
va="center", | |
color="white", | |
fontweight="bold", | |
) | |
ax.text( | |
bar_width / 4, | |
y1 + y2 + y4 + y5 / 2, | |
f"Optimizer\nintermediates\n({y5:.1f} GB)", | |
ha="center", | |
va="center", | |
color="white", | |
fontweight="bold", | |
) | |
# Or as title | |
ax.set_title(f"Total Memory: {total_memory:.1f} GB", fontweight="bold") | |
# Remove x-axis | |
ax.xaxis.set_visible(False) | |
# Set GB as the unit for the y-axis | |
ax.set_ylabel("Memory (GB)") | |
# Adjust layout | |
fig.tight_layout() | |
return fig | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Model"): | |
num_param = gr.Number(3, label="Number of parameters (B)") | |
precision = gr.Radio(["float32", "float16", "bfloat16"], value="float32", label="Precision") | |
with gr.Accordion("Data"): | |
batch_size = gr.Slider(1, 128, label="Batch size", step=1, value=8) | |
seq_len = gr.Slider(1, 1000, label="Sequence Length", step=1, value=256) | |
with gr.Accordion("Advanced", open=False): | |
with gr.Accordion("Data"): | |
grad_ckpt = gr.Checkbox(False, label="Gradient Checkpointing") | |
submit = gr.Button("Submit") | |
with gr.Column(): | |
plot = gr.Plot(label="forecast", format="png") | |
submit.click(plot_forecast, [num_param, precision, grad_ckpt, batch_size, seq_len], plot) | |
if __name__ == "__main__": | |
demo.launch() | |