Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
# ✅ Force Hugging Face cache to /tmp (writable in Spaces)
|
8 |
+
os.environ["HF_HOME"] = "/tmp"
|
9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
10 |
+
|
11 |
+
|
12 |
+
model_id = "rabiyulfahim/qa_python_gpt2"
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp")
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp")
|
16 |
+
|
17 |
+
|
18 |
+
app = FastAPI(title="QA GPT2 API", description="Serving HuggingFace model with FastAPI")
|
19 |
+
|
20 |
+
|
21 |
+
# Request schema
|
22 |
+
class QueryRequest(BaseModel):
|
23 |
+
question: str
|
24 |
+
max_new_tokens: int = 50
|
25 |
+
temperature: float = 0.7
|
26 |
+
top_p: float = 0.9
|
27 |
+
|
28 |
+
|
29 |
+
@app.get("/")
|
30 |
+
def home():
|
31 |
+
return {"message": "Welcome to QA GPT2 API 🚀"}
|
32 |
+
|
33 |
+
@app.get("/ask")
|
34 |
+
def ask(question: str, max_new_tokens: int = 50):
|
35 |
+
inputs = tokenizer(question, return_tensors="pt")
|
36 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
37 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
return {"question": question, "answer": answer}
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Health check endpoint
|
43 |
+
@app.get("/health")
|
44 |
+
def health():
|
45 |
+
return {"status": "ok"}
|
46 |
+
|
47 |
+
# Inference endpoint
|
48 |
+
@app.post("/predict")
|
49 |
+
def predict(request: QueryRequest):
|
50 |
+
inputs = tokenizer(request.question, return_tensors="pt")
|
51 |
+
outputs = model.generate(
|
52 |
+
**inputs,
|
53 |
+
max_new_tokens=request.max_new_tokens,
|
54 |
+
do_sample=True,
|
55 |
+
temperature=0.7,
|
56 |
+
top_p=0.9,
|
57 |
+
pad_token_id=tokenizer.eos_token_id,
|
58 |
+
return_dict_in_generate=True
|
59 |
+
)
|
60 |
+
|
61 |
+
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
62 |
+
return {
|
63 |
+
"question": request.question,
|
64 |
+
"answer": answer
|
65 |
+
}
|