Spaces:
Runtime error
Runtime error
adding two models to check speed
Browse files
app.py
CHANGED
@@ -3,28 +3,34 @@ from transformers import AutoModel, AutoTokenizer
|
|
3 |
from sklearn.neighbors import NearestNeighbors
|
4 |
|
5 |
|
|
|
|
|
6 |
|
7 |
-
MODEL
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
embedding_matrix =
|
|
|
12 |
|
13 |
-
knn_model = NearestNeighbors(n_neighbors=500,
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
nbrs = knn_model.fit(embedding_matrix)
|
19 |
|
20 |
-
distances, indices = nbrs.kneighbors(embedding_matrix)
|
21 |
|
|
|
22 |
|
23 |
-
title = "How does a word's meaning change with time?"
|
24 |
|
|
|
25 |
|
26 |
-
def topk(word):
|
27 |
outs = []
|
|
|
|
|
28 |
index = tokenizer.encode(f'{word}')
|
29 |
for i in indices[index[1]]:
|
30 |
outs.append(tokenizer.decode(i))
|
@@ -42,6 +48,6 @@ with gr.Blocks() as demo:
|
|
42 |
with gr.Row():
|
43 |
greet_btn = gr.Button("Compute")
|
44 |
with gr.Row():
|
45 |
-
greet_btn.click(fn=topk, inputs=[word], outputs=gr.outputs.Textbox())
|
46 |
|
47 |
demo.launch()
|
|
|
3 |
from sklearn.neighbors import NearestNeighbors
|
4 |
|
5 |
|
6 |
+
models = ['cardiffnlp/twitter-roberta-base-jun2022',
|
7 |
+
'cardiffnlp/twitter-roberta-base-2019-90m']
|
8 |
|
9 |
+
def topk_model(MODEL):
|
10 |
+
# MODEL = "cardiffnlp/twitter-roberta-base-jun2022"
|
11 |
+
model = AutoModel.from_pretrained(MODEL)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
13 |
+
embedding_matrix = model.embeddings.word_embeddings.weight
|
14 |
+
embedding_matrix = embedding_matrix.detach().numpy()
|
15 |
|
16 |
+
knn_model = NearestNeighbors(n_neighbors=500,
|
17 |
+
metric='cosine',
|
18 |
+
algorithm='auto',
|
19 |
+
n_jobs=3)
|
20 |
+
|
21 |
+
nbrs = knn_model.fit(embedding_matrix)
|
22 |
|
23 |
+
distances, indices = nbrs.kneighbors(embedding_matrix)
|
24 |
|
25 |
+
return distances,indices,tokenizer
|
26 |
|
|
|
27 |
|
28 |
+
title = "How does a word's meaning change with time?"
|
29 |
|
30 |
+
def topk(word,model):
|
31 |
outs = []
|
32 |
+
distances, indices, tokenizer = topk_model(model)
|
33 |
+
|
34 |
index = tokenizer.encode(f'{word}')
|
35 |
for i in indices[index[1]]:
|
36 |
outs.append(tokenizer.decode(i))
|
|
|
48 |
with gr.Row():
|
49 |
greet_btn = gr.Button("Compute")
|
50 |
with gr.Row():
|
51 |
+
greet_btn.click(fn=topk, inputs=[word,gr.Dropdown(models)], outputs=gr.outputs.Textbox())
|
52 |
|
53 |
demo.launch()
|