Spaces:
Runtime error
Runtime error
fixes
Browse files- README.md +3 -3
- app.py +41 -64
- requirements.txt +2 -3
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
title: Depth Image to Autostereogram (Magic Eye)
|
3 |
-
emoji: πΒ π΅βπ«Β π
|
4 |
colorFrom: green
|
5 |
colorTo: black
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
13 |
|
14 |
-
Depth Image to Autostereogram (Magic Eye)
|
|
|
1 |
---
|
2 |
title: Depth Image to Autostereogram (Magic Eye)
|
3 |
+
emoji: πΒ π΅βπ«Β π
|
4 |
colorFrom: green
|
5 |
colorTo: black
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.43.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
13 |
|
14 |
+
Depth Image to Autostereogram (Magic Eye)
|
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from doctest import Example
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageOps
|
@@ -9,12 +9,14 @@ import glob
|
|
9 |
from autostereogram.converter import StereogramConverter
|
10 |
from datetime import datetime
|
11 |
import time
|
|
|
12 |
|
13 |
-
feature_extractor =
|
14 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
|
16 |
stereo_converter = StereogramConverter()
|
17 |
|
|
|
18 |
def process_image(image_path):
|
19 |
print("\n\n\n")
|
20 |
print("Processing image:", image_path)
|
@@ -23,7 +25,8 @@ def process_image(image_path):
|
|
23 |
|
24 |
image = image_raw.resize(
|
25 |
(1280, int(1280 * image_raw.size[1] / image_raw.size[0])),
|
26 |
-
Image.Resampling.LANCZOS
|
|
|
27 |
|
28 |
# prepare image for the model
|
29 |
encoding = feature_extractor(image, return_tensors="pt")
|
@@ -41,85 +44,59 @@ def process_image(image_path):
|
|
41 |
align_corners=False,
|
42 |
).squeeze()
|
43 |
output = prediction.cpu().numpy()
|
44 |
-
depth_image = (output * 255 / np.max(output)).astype(
|
45 |
-
depth_image_padded = np.array(
|
46 |
-
Image.fromarray(depth_image), (1280, 720))
|
|
|
47 |
|
48 |
stereo_image = stereo_converter.convert_depth_to_stereogram_with_thread_pool(
|
49 |
-
depth_image_padded, False
|
50 |
-
|
51 |
-
stereo_image_pil = Image.fromarray(stereo_image).convert('RGB')
|
52 |
-
image_name = f'stereo_image_{datetime.now().strftime("%Y%m%d_%H%M%S")}.jpg'
|
53 |
-
stereo_image_pil.save(image_name)
|
54 |
-
print(time.time() - last_time)
|
55 |
-
print("\n\n\n")
|
56 |
-
return [depth_image_padded, stereo_image, image_name]
|
57 |
-
|
58 |
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
input_image = gr.Image(type="filepath", label="Input Image")
|
64 |
-
predicted_depth = gr.Image(label="Predicted Depth", type="pil")
|
65 |
-
autostereogram = gr.Image(label="Autostereogram", type="pil")
|
66 |
-
file_download = gr.File(label="Download Image")
|
67 |
|
68 |
|
69 |
-
|
70 |
-
processed_examples = [
|
71 |
-
component.preprocess_example(sample)
|
72 |
-
for component, sample in zip(
|
73 |
-
[input_image], examples_images[example_id]
|
74 |
-
)
|
75 |
-
]
|
76 |
-
if len(processed_examples) == 1:
|
77 |
-
return processed_examples[0]
|
78 |
-
else:
|
79 |
-
return processed_examples
|
80 |
|
81 |
|
82 |
-
with blocks:
|
83 |
-
gr.Markdown(
|
|
|
84 |
## Depth Image to Autostereogram (Magic Eye)
|
85 |
This demo is a variation from the original [DPT Demo](https://huggingface.co/spaces/nielsr/dpt-depth-estimation).
|
86 |
Zero-shot depth estimation from an image, then it uses [pystereogram](https://github.com/yxiao1996/pystereogram)
|
87 |
to generate the autostereogram (Magic Eye)
|
88 |
<base target="_blank">
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
with gr.Row():
|
93 |
-
examples_c = gr.components.Dataset(
|
94 |
-
components=[input_image],
|
95 |
-
samples=examples_images,
|
96 |
-
type="index",
|
97 |
-
)
|
98 |
-
|
99 |
-
examples_c.click(
|
100 |
-
load_example,
|
101 |
-
inputs=[examples_c],
|
102 |
-
outputs=[input_image],
|
103 |
-
postprocess=False,
|
104 |
-
queue=False,
|
105 |
-
)
|
106 |
-
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
-
input_image.
|
110 |
button = gr.Button("Predict")
|
111 |
-
button.click(fn=process_image, inputs=[input_image],
|
112 |
-
outputs=[predicted_depth,
|
113 |
-
autostereogram, file_download],
|
114 |
-
)
|
115 |
-
|
116 |
with gr.Column():
|
117 |
-
predicted_depth.
|
118 |
with gr.Row():
|
119 |
-
autostereogram.
|
120 |
with gr.Row():
|
121 |
with gr.Column():
|
122 |
-
file_download.
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from doctest import Example
|
2 |
import gradio as gr
|
3 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageOps
|
|
|
9 |
from autostereogram.converter import StereogramConverter
|
10 |
from datetime import datetime
|
11 |
import time
|
12 |
+
import tempfile
|
13 |
|
14 |
+
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
15 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
16 |
|
17 |
stereo_converter = StereogramConverter()
|
18 |
|
19 |
+
|
20 |
def process_image(image_path):
|
21 |
print("\n\n\n")
|
22 |
print("Processing image:", image_path)
|
|
|
25 |
|
26 |
image = image_raw.resize(
|
27 |
(1280, int(1280 * image_raw.size[1] / image_raw.size[0])),
|
28 |
+
Image.Resampling.LANCZOS,
|
29 |
+
)
|
30 |
|
31 |
# prepare image for the model
|
32 |
encoding = feature_extractor(image, return_tensors="pt")
|
|
|
44 |
align_corners=False,
|
45 |
).squeeze()
|
46 |
output = prediction.cpu().numpy()
|
47 |
+
depth_image = (output * 255 / np.max(output)).astype("uint8")
|
48 |
+
depth_image_padded = np.array(
|
49 |
+
ImageOps.pad(Image.fromarray(depth_image), (1280, 720))
|
50 |
+
)
|
51 |
|
52 |
stereo_image = stereo_converter.convert_depth_to_stereogram_with_thread_pool(
|
53 |
+
depth_image_padded, False
|
54 |
+
).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
stereo_image_pil = Image.fromarray(stereo_image).convert("RGB")
|
57 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
58 |
+
image_name = f.name
|
59 |
+
stereo_image_pil.save(image_name)
|
60 |
|
61 |
+
return [depth_image_padded, stereo_image, image_name]
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
+
examples_images = [[f] for f in sorted(glob.glob("examples/*.jpg"))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
+
with gr.Blocks() as blocks:
|
68 |
+
gr.Markdown(
|
69 |
+
"""
|
70 |
## Depth Image to Autostereogram (Magic Eye)
|
71 |
This demo is a variation from the original [DPT Demo](https://huggingface.co/spaces/nielsr/dpt-depth-estimation).
|
72 |
Zero-shot depth estimation from an image, then it uses [pystereogram](https://github.com/yxiao1996/pystereogram)
|
73 |
to generate the autostereogram (Magic Eye)
|
74 |
<base target="_blank">
|
75 |
|
76 |
+
"""
|
77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
+
input_image = gr.Image(type="filepath", label="Input Image")
|
81 |
button = gr.Button("Predict")
|
|
|
|
|
|
|
|
|
|
|
82 |
with gr.Column():
|
83 |
+
predicted_depth = gr.Image(label="Predicted Depth", type="pil")
|
84 |
with gr.Row():
|
85 |
+
autostereogram = gr.Image(label="Autostereogram", type="pil")
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
+
file_download = gr.File(label="Download Image")
|
89 |
+
with gr.Row():
|
90 |
+
gr.Examples(
|
91 |
+
examples=examples_images,
|
92 |
+
fn=process_image,
|
93 |
+
inputs=[input_image],
|
94 |
+
outputs=[predicted_depth, autostereogram, file_download],
|
95 |
+
cache_examples=True,
|
96 |
+
)
|
97 |
+
button.click(
|
98 |
+
fn=process_image,
|
99 |
+
inputs=[input_image],
|
100 |
+
outputs=[predicted_depth, autostereogram, file_download],
|
101 |
+
)
|
102 |
+
blocks.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
torch
|
2 |
-
|
3 |
-
numpy
|
4 |
Pillow
|
5 |
-
gradio==3.
|
6 |
jinja2
|
7 |
transformers
|
8 |
scikit-image
|
|
|
1 |
torch
|
2 |
+
transformers
|
|
|
3 |
Pillow
|
4 |
+
gradio==3.43.2
|
5 |
jinja2
|
6 |
transformers
|
7 |
scikit-image
|