Spaces:
Runtime error
Runtime error
File size: 12,455 Bytes
809d7f5 fd1991c 809d7f5 fd1991c 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 e785a41 809d7f5 6772c51 809d7f5 fd1991c e785a41 6772c51 809d7f5 6772c51 e785a41 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 6772c51 809d7f5 e785a41 809d7f5 6772c51 809d7f5 e785a41 809d7f5 fd1991c 809d7f5 b71f456 809d7f5 fd1991c e785a41 809d7f5 55aacdd 809d7f5 55aacdd 809d7f5 55aacdd 809d7f5 55aacdd 809d7f5 55aacdd 809d7f5 55aacdd 809d7f5 e785a41 809d7f5 6772c51 809d7f5 55aacdd e785a41 55aacdd 809d7f5 55aacdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import cv2
import torch
import random
import tempfile
import numpy as np
from pathlib import Path
from PIL import Image
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
TCDScheduler,
)
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from ip_adapter import IPAdapter
snapshot_download(repo_id="h94/IP-Adapter", allow_patterns="models/*", local_dir=".")
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# initialization
base_model_path = "runwayml/stable-diffusion-v1-5"
image_encoder_path = "models/image_encoder"
ip_ckpt = "models/ip-adapter_sd15.bin"
controlnet_path = "lllyasviel/control_v11p_sd15_canny"
controlnet = ControlNetModel.from_pretrained(
controlnet_path, use_safetensors=False, torch_dtype=torch.float16
).to(device)
# load Hyper SD
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")
)
pipe.enable_vae_tiling()
eta = 1.0
ip_model = IPAdapter(
pipe,
image_encoder_path,
ip_ckpt,
device,
)
def resize_img(
input_image,
max_side=1280,
min_side=512,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
examples = [
[
"./assets/0.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0,
],
[
"./assets/1.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0,
],
[
"./assets/2.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0,
],
[
"./assets/3.jpg",
None,
"a cat, masterpiece, best quality, high quality",
1.0,
0.0,
],
[
"./assets/2.jpg",
"./assets/yann-lecun.jpg",
"a man, masterpiece, best quality, high quality",
1.0,
0.6,
],
]
def run_for_examples(style_image, source_image, prompt, scale, control_scale):
return create_image(
image_pil=style_image,
input_image=source_image,
prompt=prompt,
n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
scale=scale,
control_scale=control_scale,
guidance_scale=0.0,
num_inference_steps=2,
seed=42,
target="Load only style blocks",
neg_content_prompt="",
neg_content_scale=0,
)
@spaces.GPU(enable_queue=True)
def create_image(
image_pil,
input_image,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target="Load only style blocks",
neg_content_prompt=None,
neg_content_scale=0,
):
seed = random.randint(0, MAX_SEED) if seed == -1 else seed
if target == "Load original IP-Adapter":
# target_blocks=["blocks"] for original IP-Adapter
ip_model = IPAdapter(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
)
elif target == "Load only style blocks":
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
ip_model = IPAdapter(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.1"],
)
elif target == "Load style+layout block":
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapter(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["down_blocks.2", "mid_block", "up_blocks.1"],
)
if input_image is not None:
input_image = resize_img(input_image, max_side=512)
cv_input_image = pil_to_cv2(input_image)
detected_map = cv2.Canny(cv_input_image, 50, 200)
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
else:
canny_map = Image.new("RGB", (512, 512), color=(255, 255, 255))
control_scale = 0
if float(control_scale) == 0:
canny_map = canny_map.resize((512, 512))
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
images = ip_model.generate(
width=512,
height=512,
pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
neg_content_prompt=neg_content_prompt,
neg_content_scale=neg_content_scale,
eta=1.0,
)
else:
images = ip_model.generate(
width=512,
height=512,
pil_image=image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
eta=1.0,
)
image = images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
return Path(tmpfile.name)
def pil_to_cv2(image_pil):
image_np = np.array(image_pil)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
return image_cv2
# Description
title = r"""
<h1 align="center">InstantStyle + Hyper-SD</h1>
"""
description = r"""
<b>Forked from <a href='https://github.com/InstantStyle/InstantStyle' target='_blank'>InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</a>.<br>
<b>Model by <a href='https://huggingface.co/ByteDance/Hyper-SD' target='_blank'>Hyper-SD</a> and <a href='https://huggingface.co/h94/IP-Adapter' target='_blank'>IP-Adapter</a>.</b><br>
"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantstyle,
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2404.02733},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
"""
block = gr.Blocks()
with block:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value="a cat, masterpiece, best quality, high quality",
)
scale = gr.Slider(
minimum=0, maximum=2.0, step=0.01, value=1.0, label="Scale"
)
with gr.Accordion(open=False, label="Advanced Options"):
target = gr.Radio(
[
"Load only style blocks",
"Load style+layout block",
"Load original IP-Adapter",
],
value="Load only style blocks",
label="Style mode",
)
with gr.Column():
src_image_pil = gr.Image(
label="Source Image (optional)", type="pil"
)
control_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="Controlnet conditioning scale",
)
n_prompt = gr.Textbox(
label="Neg Prompt",
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
)
neg_content_prompt = gr.Textbox(
label="Neg Content Prompt", value=""
)
neg_content_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="Neg Content Scale",
)
guidance_scale = gr.Slider(
minimum=0,
maximum=10.0,
step=0.01,
value=0.0,
label="guidance scale",
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=10.0,
step=1.0,
value=3,
label="num inference steps",
)
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
value=-1,
step=1,
label="Seed Value",
)
generate_button = gr.Button("Generate Image")
with gr.Column():
generated_image = gr.Image(label="Generated Image")
inputs = [
image_pil,
src_image_pil,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target,
neg_content_prompt,
neg_content_scale,
]
outputs = [generated_image]
gr.on(
triggers=[
prompt.input,
generate_button.click,
guidance_scale.input,
scale.input,
control_scale.input,
seed.input,
num_inference_steps.input,
target.input,
neg_content_prompt.input,
neg_content_scale.input,
],
fn=create_image,
inputs=inputs,
outputs=outputs,
show_progress="minimal",
show_api=False,
trigger_mode="always_last",
)
gr.Examples(
examples=examples,
inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.queue(api_open=False)
block.launch(show_api=False)
|