import os os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"') import spaces import os import gradio as gr import torch from diffusers import WanPipeline, AutoencoderKLWan from diffusers.utils import export_to_video # Model setup dtype = torch.bfloat16 device = "cuda" model_id = "FastDM/Wan2.2-T2V-A14B-Merge-Lightning-V1.0-Diffusers" print("Loading model... this may take a while.") vae = AutoencoderKLWan.from_pretrained( model_id, subfolder="vae", torch_dtype=torch.float32 ) pipe = WanPipeline.from_pretrained( model_id, vae=vae, torch_dtype=dtype ).to(device) # Default values DEFAULT_PROMPT = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." DEFAULT_NEGATIVE = "bad quality, blurry, distorted, extra limbs, watermark, text" @spaces.GPU(duration=60) def generate_video(prompt, negative_prompt, height, width, num_frames, steps, guidance): video = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=num_frames, guidance_scale=guidance, num_inference_steps=steps, ).frames[0] output_path = "t2v_out.mp4" export_to_video(video, output_path, fps=16) return output_path with gr.Blocks() as demo: gr.Markdown("# 🎬 Wan2.2 Text-to-Video Demo") gr.Markdown("Generate short AI videos from text prompts.") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value=DEFAULT_PROMPT, lines=3) negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE, lines=2) height = gr.Slider(256, 1280, value=720, step=64, label="Height") width = gr.Slider(256, 1280, value=1280, step=64, label="Width") num_frames = gr.Slider(16, 128, value=81, step=1, label="Number of Frames") steps = gr.Slider(1, 20, value=4, step=1, label="Inference Steps") guidance = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Guidance Scale") generate_btn = gr.Button("🚀 Generate Video") with gr.Column(): video_output = gr.Video(label="Generated Video") generate_btn.click( fn=generate_video, inputs=[prompt, negative_prompt, height, width, num_frames, steps, guidance], outputs=[video_output], ) demo.launch()