Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,18 @@ from PIL import Image
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
MID = "apple/FastVLM-7B"
|
10 |
IMAGE_TOKEN_INDEX = -200
|
11 |
|
12 |
-
# Initialize model variables
|
13 |
tok = None
|
14 |
model = None
|
15 |
|
@@ -17,25 +23,28 @@ model = None
|
|
17 |
def load_model():
|
18 |
global tok, model
|
19 |
if tok is None or model is None:
|
20 |
-
|
21 |
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
MID,
|
24 |
-
torch_dtype=torch.float32, # ✅ CPU-friendly
|
25 |
device_map="cpu", # ✅ Force CPU
|
26 |
trust_remote_code=True,
|
27 |
)
|
28 |
-
|
29 |
return tok, model
|
30 |
|
31 |
|
32 |
# ---------------- Frame Extraction ----------------
|
33 |
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
|
|
|
34 |
cap = cv2.VideoCapture(video_path)
|
35 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
36 |
|
37 |
if total_frames == 0:
|
38 |
cap.release()
|
|
|
39 |
return []
|
40 |
|
41 |
frames = []
|
@@ -50,12 +59,17 @@ def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str =
|
|
50 |
start = max(0, (total_frames - num_frames) // 2)
|
51 |
indices = list(range(start, min(start + num_frames, total_frames)))
|
52 |
|
|
|
|
|
53 |
for idx in indices:
|
54 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
55 |
ret, frame = cap.read()
|
56 |
if ret:
|
57 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
58 |
frames.append(Image.fromarray(frame_rgb))
|
|
|
|
|
|
|
59 |
|
60 |
cap.release()
|
61 |
return frames
|
@@ -65,6 +79,8 @@ def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str =
|
|
65 |
def caption_frame(image: Image.Image, prompt: str) -> str:
|
66 |
tok, model = load_model()
|
67 |
|
|
|
|
|
68 |
messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
|
69 |
rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
70 |
pre, post = rendered.split("<image>", 1)
|
@@ -88,10 +104,14 @@ def caption_frame(image: Image.Image, prompt: str) -> str:
|
|
88 |
do_sample=True,
|
89 |
)
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
if prompt in caption:
|
93 |
caption = caption.split(prompt)[-1].strip()
|
94 |
|
|
|
95 |
return caption
|
96 |
|
97 |
|
@@ -99,13 +119,16 @@ def caption_frame(image: Image.Image, prompt: str) -> str:
|
|
99 |
def process_video(video_path, num_frames, sampling_method, chat_history, progress=gr.Progress()):
|
100 |
if not video_path:
|
101 |
chat_history.append(["Assistant", "Please upload a video first."])
|
|
|
102 |
return chat_history, None
|
103 |
|
|
|
104 |
progress(0, desc="Extracting frames...")
|
105 |
frames = extract_frames(video_path, num_frames, sampling_method)
|
106 |
|
107 |
if not frames:
|
108 |
chat_history.append(["Assistant", "Failed to extract frames."])
|
|
|
109 |
return chat_history, None
|
110 |
|
111 |
prompt = "Provide a brief one-sentence description of what's happening in this image."
|
@@ -117,29 +140,28 @@ def process_video(video_path, num_frames, sampling_method, chat_history, progres
|
|
117 |
captions.append(f"Frame {i+1}: {caption}")
|
118 |
chat_history[-1] = ["Assistant", "\n".join(captions)]
|
119 |
progress((i + 1) / len(frames))
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
progress(1.0, desc="Analysis complete!")
|
122 |
return chat_history, frames
|
123 |
|
124 |
|
125 |
-
# ----------------
|
126 |
class AppleTheme(gr.themes.Base):
|
127 |
def __init__(self):
|
128 |
super().__init__(
|
129 |
primary_hue=gr.themes.colors.blue,
|
130 |
secondary_hue=gr.themes.colors.gray,
|
131 |
neutral_hue=gr.themes.colors.gray,
|
132 |
-
spacing_size=gr.themes.sizes.spacing_md,
|
133 |
-
radius_size=gr.themes.sizes.radius_md,
|
134 |
-
text_size=gr.themes.sizes.text_md,
|
135 |
-
font=[gr.themes.GoogleFont("Inter"), "SF Pro Display", "Helvetica Neue", "Arial", "sans-serif"],
|
136 |
-
font_mono=[gr.themes.GoogleFont("SF Mono"), "Consolas", "monospace"]
|
137 |
)
|
138 |
|
139 |
|
140 |
-
# ---------------- Gradio UI ----------------
|
141 |
with gr.Blocks(theme=AppleTheme()) as demo:
|
142 |
-
gr.Markdown("# 🎬 FastVLM Video Captioning (CPU Only)")
|
143 |
|
144 |
with gr.Row():
|
145 |
with gr.Column(scale=7):
|
@@ -168,7 +190,7 @@ with gr.Blocks(theme=AppleTheme()) as demo:
|
|
168 |
|
169 |
# ---------------- Launch ----------------
|
170 |
demo.launch(
|
171 |
-
server_name="0.0.0.0",
|
172 |
server_port=7860,
|
173 |
share=False,
|
174 |
show_error=True
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# ---------------- Logging Setup ----------------
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
13 |
+
handlers=[logging.StreamHandler()]
|
14 |
+
)
|
15 |
|
16 |
MID = "apple/FastVLM-7B"
|
17 |
IMAGE_TOKEN_INDEX = -200
|
18 |
|
|
|
19 |
tok = None
|
20 |
model = None
|
21 |
|
|
|
23 |
def load_model():
|
24 |
global tok, model
|
25 |
if tok is None or model is None:
|
26 |
+
logging.info("Loading FastVLM model (CPU only)...")
|
27 |
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
MID,
|
30 |
+
torch_dtype=torch.float32, # ✅ CPU-friendly
|
31 |
device_map="cpu", # ✅ Force CPU
|
32 |
trust_remote_code=True,
|
33 |
)
|
34 |
+
logging.info("✅ Model loaded successfully on CPU")
|
35 |
return tok, model
|
36 |
|
37 |
|
38 |
# ---------------- Frame Extraction ----------------
|
39 |
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
|
40 |
+
logging.info(f"Extracting up to {num_frames} frames using '{sampling_method}' sampling")
|
41 |
cap = cv2.VideoCapture(video_path)
|
42 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
43 |
+
logging.info(f"Total frames in video: {total_frames}")
|
44 |
|
45 |
if total_frames == 0:
|
46 |
cap.release()
|
47 |
+
logging.warning("⚠️ No frames found in video")
|
48 |
return []
|
49 |
|
50 |
frames = []
|
|
|
59 |
start = max(0, (total_frames - num_frames) // 2)
|
60 |
indices = list(range(start, min(start + num_frames, total_frames)))
|
61 |
|
62 |
+
logging.info(f"Selected frame indices: {indices}")
|
63 |
+
|
64 |
for idx in indices:
|
65 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
66 |
ret, frame = cap.read()
|
67 |
if ret:
|
68 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
69 |
frames.append(Image.fromarray(frame_rgb))
|
70 |
+
logging.info(f"✅ Extracted frame {idx}")
|
71 |
+
else:
|
72 |
+
logging.warning(f"⚠️ Failed to extract frame {idx}")
|
73 |
|
74 |
cap.release()
|
75 |
return frames
|
|
|
79 |
def caption_frame(image: Image.Image, prompt: str) -> str:
|
80 |
tok, model = load_model()
|
81 |
|
82 |
+
logging.info(f"Captioning frame with prompt: {prompt!r}")
|
83 |
+
|
84 |
messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
|
85 |
rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
86 |
pre, post = rendered.split("<image>", 1)
|
|
|
104 |
do_sample=True,
|
105 |
)
|
106 |
|
107 |
+
raw_output = tok.decode(out[0], skip_special_tokens=True)
|
108 |
+
logging.info(f"Raw model output: {raw_output!r}")
|
109 |
+
|
110 |
+
caption = raw_output
|
111 |
if prompt in caption:
|
112 |
caption = caption.split(prompt)[-1].strip()
|
113 |
|
114 |
+
logging.info(f"✅ Final cleaned caption: {caption!r}")
|
115 |
return caption
|
116 |
|
117 |
|
|
|
119 |
def process_video(video_path, num_frames, sampling_method, chat_history, progress=gr.Progress()):
|
120 |
if not video_path:
|
121 |
chat_history.append(["Assistant", "Please upload a video first."])
|
122 |
+
logging.warning("No video uploaded")
|
123 |
return chat_history, None
|
124 |
|
125 |
+
logging.info(f"Starting analysis of video: {video_path}")
|
126 |
progress(0, desc="Extracting frames...")
|
127 |
frames = extract_frames(video_path, num_frames, sampling_method)
|
128 |
|
129 |
if not frames:
|
130 |
chat_history.append(["Assistant", "Failed to extract frames."])
|
131 |
+
logging.error("No frames extracted")
|
132 |
return chat_history, None
|
133 |
|
134 |
prompt = "Provide a brief one-sentence description of what's happening in this image."
|
|
|
140 |
captions.append(f"Frame {i+1}: {caption}")
|
141 |
chat_history[-1] = ["Assistant", "\n".join(captions)]
|
142 |
progress((i + 1) / len(frames))
|
143 |
+
logging.info(f"Progress: frame {i+1}/{len(frames)} analyzed")
|
144 |
+
|
145 |
+
final_summary = "\n".join(captions)
|
146 |
+
logging.info("✅ Video analysis complete")
|
147 |
+
logging.info(f"Final summary:\n{final_summary}")
|
148 |
|
149 |
progress(1.0, desc="Analysis complete!")
|
150 |
return chat_history, frames
|
151 |
|
152 |
|
153 |
+
# ---------------- Gradio UI ----------------
|
154 |
class AppleTheme(gr.themes.Base):
|
155 |
def __init__(self):
|
156 |
super().__init__(
|
157 |
primary_hue=gr.themes.colors.blue,
|
158 |
secondary_hue=gr.themes.colors.gray,
|
159 |
neutral_hue=gr.themes.colors.gray,
|
|
|
|
|
|
|
|
|
|
|
160 |
)
|
161 |
|
162 |
|
|
|
163 |
with gr.Blocks(theme=AppleTheme()) as demo:
|
164 |
+
gr.Markdown("# 🎬 FastVLM Video Captioning (CPU Only, with Logs)")
|
165 |
|
166 |
with gr.Row():
|
167 |
with gr.Column(scale=7):
|
|
|
190 |
|
191 |
# ---------------- Launch ----------------
|
192 |
demo.launch(
|
193 |
+
server_name="0.0.0.0",
|
194 |
server_port=7860,
|
195 |
share=False,
|
196 |
show_error=True
|