import time import gradio as gr import aiohttp import asyncio import json # Define the types and their associated models with labels and values types_and_models = { 'groq': [ ('Llama 3.1 8B Instant', 'llama-3.1-8b-instant'), ('Llama 3.1 70B Versatile', 'llama-3.1-70b-versatile'), ('Llama 3.2 3B Instant', 'llama-3.2-3b-preview'), ], 'openai': [ ('GPT-4o Mini', 'gpt-4o-mini'), ('GPT-4o', 'gpt-4o'), ], 'deepinfra': [ ('Llama 8B', 'meta-llama/Meta-Llama-3.1-8B-Instruct'), ('Llama 3B', 'meta-llama/Llama-3.2-3B-Instruct'), ('Llama 70B', 'meta-llama/Meta-Llama-3.1-70B-Instruct'), ('Llama 405B', 'meta-llama/Meta-Llama-3.1-405B-Instruct'), ('Qwen 32B', 'Qwen/Qwen2.5-Coder-32B-Instruct'), ('Qwen 72B', 'Qwen/Qwen2.5-72B-Instruct'), ], 'custom': [], 'open_router': [], } def update_model_input(selected_type): if selected_type in ['custom', 'open_router']: return gr.update(visible=False), gr.update(visible=True) else: choices = types_and_models[selected_type] default_value = choices[0][1] if choices else None return gr.update(choices=choices, value=default_value, visible=True), gr.update(visible=False) async def chat_with_server(chat_history, api_key, base_url, selected_type, selected_model, custom_model, temperature, max_tokens): headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}', } api_url = 'https://api.logicboost.net' # API URL conversation = [] for user_msg, assistant_msg in chat_history: if user_msg is not None: conversation.append(f"User: {user_msg}") if assistant_msg and not assistant_msg.startswith("Assistant is thinking"): conversation.append(f"Assistant: {assistant_msg}") elif assistant_msg and assistant_msg.startswith("Assistant is thinking"): conversation.append(f"System: {assistant_msg}") user_content = "\n".join(conversation) api_messages = [{'role': 'user', 'content': user_content}] model = custom_model if selected_type in ['custom', 'open_router'] else selected_model payload = { 'type': selected_type, 'baseUrl': base_url, 'model': model, 'messages': api_messages, 'temperature': temperature, 'max_tokens': int(max_tokens), 'stream': True, } start_time = time.time() if chat_history: chat_history[-1][1] = "Assistant is thinking (0 sec)" yield chat_history async with aiohttp.ClientSession() as session: try: response_task = asyncio.create_task(session.post( f'{api_url}/v1/chat/completions', headers=headers, json=payload, timeout=1200 )) dots_count = 0 assistant_message = '' while not response_task.done(): elapsed_time = time.time() - start_time minutes, seconds = divmod(int(elapsed_time), 60) time_str = f"{minutes} min {seconds} sec" if minutes > 0 else f"{seconds} sec" dots = '.' * ((dots_count % 3) + 1) dots_count += 1 if chat_history: chat_history[-1][1] = f"Assistant is thinking ({time_str}){dots}" yield chat_history await asyncio.sleep(0.5) response = await response_task if response.status != 200: error_message = f"Error {response.status}: {await response.text()}" chat_history[-1][1] = error_message yield chat_history return assistant_message = '' async for line in response.content: line = line.decode('utf-8').strip() if line == '': continue if line == 'data: [DONE]': break if line.startswith('data: '): data_str = line[6:].strip() if data_str: data = json.loads(data_str) if 'choices' in data and len(data['choices']) > 0: delta = data['choices'][0]['delta'] if 'content' in delta: content = delta['content'] assistant_message += content chat_history[-1][1] = assistant_message yield chat_history yield chat_history except Exception as e: error_message = f"Error: {str(e)}" chat_history[-1][1] = error_message yield chat_history def reset_chat(): return [] with gr.Blocks() as demo: gr.Markdown("""# 🧠 Logic Boost It's an alternative realization of the analog - GPT-o1""") with gr.Row(): api_key = gr.Textbox(label="API Key", placeholder="Enter your API Key", value="ggkjgf", type="password", lines=1) base_url = gr.Textbox(label="Base URL", placeholder="https://api.groq.com/openai/v1", lines=2) selected_type = gr.Dropdown( label="Provider", choices=list(types_and_models.keys()), value=list(types_and_models.keys())[0] ) # Initialize the selected_model with choices and value initial_type = list(types_and_models.keys())[0] initial_choices = types_and_models[initial_type] selected_model = gr.Dropdown( label="Model", choices=initial_choices, value=initial_choices[0][1] if initial_choices else None ) custom_model = gr.Textbox(label="Custom Model", placeholder="Enter custom model name", visible=False) temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, value=0.8, step=0.1) max_tokens = gr.Number(label="Max Tokens", value=4096) # Initialize the chatbot component chatbot = gr.Chatbot(elem_id="chatbot", height=400, render_markdown=True, latex_delimiters=[ {"left": "$", "right": "$", "display": False}, {"left": "\\[", "right": "\\]", "display": True}]) with gr.Row(): with gr.Column(scale=10): user_input = gr.Textbox( show_label=False, placeholder="Type your message here...", lines=5, container=False ) with gr.Column(min_width=50, scale=1): send_button = gr.Button("Send", variant="primary") reset_button = gr.Button("Reset Chat") # Update the models dropdown when the type changes selected_type.change( update_model_input, inputs=selected_type, outputs=[selected_model, custom_model] ) def user(user_message, chat_history): # Append the user's message to the chat history if not chat_history: chat_history = [] chat_history = chat_history + [[user_message, None]] return user_message, chat_history # Set up the event handlers send_button.click( user, inputs=[user_input, chatbot], outputs=[user_input, chatbot] ).then( chat_with_server, inputs=[chatbot, api_key, base_url, selected_type, selected_model, custom_model, temperature, max_tokens], outputs=chatbot, ) reset_button.click(reset_chat, outputs=chatbot) # Include CSS to format code blocks and other markdown elements gr.HTML(""" """) gr.Markdown("""
## 🧠 About Logic Boost Logic Boost is a modification of the **XoT** (_Everything of Thoughts_) technique, designed to enhance LLM reasoning. This implementation incorporates self-dialog and automated Monte Carlo Tree Search (MCTS) to improve problem-solving capabilities. The technique aims to refine the thought process of LLMs, allowing for more effective exploration of solution spaces and the generation of multiple solution paths. By leveraging self-dialog and MCTS, Logic Boost enables LLMs to tackle complex, multi-solution problems more efficiently. This interface demonstrates the application of Logic Boost, showcasing its potential to enhance reasoning across various problem domains.
""") demo.queue() demo.launch()