import torch import torch.nn as nn import os import cv2 import numpy as np __all__ = [ 'color_cluster', 'Color2Sketch', 'Sketch2Color', 'Discriminator', ] def color_cluster(img, nclusters=9): """ Apply K-means clustering to the input image Args: img: Numpy array which has shape of (H, W, C) nclusters: # of clusters (default = 9) Returns: color_palette: list of 3D numpy arrays which have same shape of that of input image e.g. If input image has shape of (256, 256, 3) and nclusters is 4, the return color_palette is [color1, color2, color3, color4] and each component is (256, 256, 3) numpy array. Note: K-means clustering algorithm is quite computaionally intensive. Thus, before extracting dominant colors, the input images are resized to x0.25 size. """ img_size = img.shape small_img = cv2.resize(img, None, fx=0.25, fy=0.25, interpolation=cv2.INTER_AREA) sample = small_img.reshape((-1, 3)) sample = np.float32(sample) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) flags = cv2.KMEANS_PP_CENTERS _, _, centers = cv2.kmeans(sample, nclusters, None, criteria, 10, flags) centers = np.uint8(centers) color_palette = [] for i in range(0, nclusters): dominant_color = np.zeros(img_size, dtype='uint8') dominant_color[:, :, :] = centers[i] color_palette.append(dominant_color) return color_palette class ApplyNoise(nn.Module): def __init__(self, channels): super().__init__() self.weight = nn.Parameter(torch.zeros(channels)) def forward(self, x, noise=None): if noise is None: noise = torch.randn(x.size(0), 1, x.size(2), x.size(3), device=x.device, dtype=x.dtype) return x + self.weight.view(1, -1, 1, 1) * noise.to(x.device) class Conv2d_WS(nn.Conv2d): def __init__(self, in_chan, out_chan, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__(in_chan, out_chan, kernel_size, stride, padding, dilation, groups, bias) def forward(self, x): weight = self.weight weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True) weight = weight - weight_mean std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 weight = weight / std.expand_as(weight) return torch.nn.functional.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, sample=None): super(ResidualBlock, self).__init__() self.ic = in_channels self.oc = out_channels self.conv1 = Conv2d_WS(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.GroupNorm(32, out_channels) self.conv2 = Conv2d_WS(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.GroupNorm(32, out_channels) self.convr = Conv2d_WS(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bnr = nn.GroupNorm(32, out_channels) self.relu = nn.ReLU(inplace=True) self.sample = sample if self.sample == 'down': self.sampling = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) elif self.sample == 'up': self.sampling = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, x): if self.ic != self.oc: residual = self.convr(x) residual = self.bnr(residual) else: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) if self.sample is not None: out = self.sampling(out) return out class Attention_block(nn.Module): def __init__(self, F_g, F_l, F_int): super(Attention_block, self).__init__() self.W_g = nn.Sequential( Conv2d_WS(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.GroupNorm(32, F_int) ) self.W_x = nn.Sequential( Conv2d_WS(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.GroupNorm(32, F_int) ) self.psi = nn.Sequential( Conv2d_WS(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.InstanceNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi class Color2Sketch(nn.Module): def __init__(self, nc=3, pretrained=False): super(Color2Sketch, self).__init__() class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # Build ResNet and change first conv layer to accept single-channel input self.layer1 = ResidualBlock(nc, 64, sample='down') self.layer2 = ResidualBlock(64, 128, sample='down') self.layer3 = ResidualBlock(128, 256, sample='down') self.layer4 = ResidualBlock(256, 512, sample='down') self.layer5 = ResidualBlock(512, 512, sample='down') self.layer6 = ResidualBlock(512, 512, sample='down') self.layer7 = ResidualBlock(512, 512, sample='down') def forward(self, input_image): # Pass input through ResNet-gray to extract features x0 = input_image # nc * 256 * 256 x1 = self.layer1(x0) # 64 * 128 * 128 x2 = self.layer2(x1) # 128 * 64 * 64 x3 = self.layer3(x2) # 256 * 32 * 32 x4 = self.layer4(x3) # 512 * 16 * 16 x5 = self.layer5(x4) # 512 * 8 * 8 x6 = self.layer6(x5) # 512 * 4 * 4 x7 = self.layer7(x6) # 512 * 2 * 2 return x1, x2, x3, x4, x5, x6, x7 class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() # Convolutional layers and upsampling self.noise7 = ApplyNoise(512) self.layer7_up = ResidualBlock(512, 512, sample='up') self.Att6 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer6 = ResidualBlock(1024, 512, sample=None) self.noise6 = ApplyNoise(512) self.layer6_up = ResidualBlock(512, 512, sample='up') self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer5 = ResidualBlock(1024, 512, sample=None) self.noise5 = ApplyNoise(512) self.layer5_up = ResidualBlock(512, 512, sample='up') self.Att4 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer4 = ResidualBlock(1024, 512, sample=None) self.noise4 = ApplyNoise(512) self.layer4_up = ResidualBlock(512, 256, sample='up') self.Att3 = Attention_block(F_g=256, F_l=256, F_int=128) self.layer3 = ResidualBlock(512, 256, sample=None) self.noise3 = ApplyNoise(256) self.layer3_up = ResidualBlock(256, 128, sample='up') self.Att2 = Attention_block(F_g=128, F_l=128, F_int=64) self.layer2 = ResidualBlock(256, 128, sample=None) self.noise2 = ApplyNoise(128) self.layer2_up = ResidualBlock(128, 64, sample='up') self.Att1 = Attention_block(F_g=64, F_l=64, F_int=32) self.layer1 = ResidualBlock(128, 64, sample=None) self.noise1 = ApplyNoise(64) self.layer1_up = ResidualBlock(64, 32, sample='up') self.noise0 = ApplyNoise(32) self.layer0 = Conv2d_WS(32, 3, kernel_size=3, stride=1, padding=1) self.activation = nn.ReLU(inplace=True) self.tanh = nn.Tanh() def forward(self, midlevel_input): # , global_input): x1, x2, x3, x4, x5, x6, x7 = midlevel_input x = self.noise7(x7) x = self.layer7_up(x) # 512 * 4 * 4 x6 = self.Att6(g=x, x=x6) x = torch.cat((x, x6), dim=1) # 1024 * 4 * 4 x = self.layer6(x) # 512 * 4 * 4 x = self.noise6(x) x = self.layer6_up(x) # 512 * 8 * 8 x5 = self.Att5(g=x, x=x5) x = torch.cat((x, x5), dim=1) # 1024 * 8 * 8 x = self.layer5(x) # 512 * 8 * 8 x = self.noise5(x) x = self.layer5_up(x) # 512 * 16 * 16 x4 = self.Att4(g=x, x=x4) x = torch.cat((x, x4), dim=1) # 1024 * 16 * 16 x = self.layer4(x) # 512 * 16 * 16 x = self.noise4(x) x = self.layer4_up(x) # 256 * 32 * 32 x3 = self.Att3(g=x, x=x3) x = torch.cat((x, x3), dim=1) # 512 * 32 * 32 x = self.layer3(x) # 256 * 32 * 32 x = self.noise3(x) x = self.layer3_up(x) # 128 * 64 * 64 x2 = self.Att2(g=x, x=x2) x = torch.cat((x, x2), dim=1) # 256 * 64 * 64 x = self.layer2(x) # 128 * 64 * 64 x = self.noise2(x) x = self.layer2_up(x) # 64 * 128 * 128 x1 = self.Att1(g=x, x=x1) x = torch.cat((x, x1), dim=1) # 128 * 128 * 128 x = self.layer1(x) # 64 * 128 * 128 x = self.noise1(x) x = self.layer1_up(x) # 32 * 256 * 256 x = self.noise0(x) x = self.layer0(x) # 3 * 256 * 256 x = self.tanh(x) return x self.encoder = Encoder() self.decoder = Decoder() if pretrained: print('Loading pretrained {0} model...'.format('Color2Sketch'), end=' ') checkpoint = torch.load('color2edge.pth', map_location = "cuda" if torch.cuda.is_available() else "cpu") self.load_state_dict(checkpoint['netG'], strict=True) print("Done!") else: self.apply(weights_init) print('Weights of {0} model are initialized'.format('Color2Sketch')) def forward(self, inputs): encode = self.encoder(inputs) output = self.decoder(encode) return output class Sketch2Color(nn.Module): def __init__(self, nc=3, pretrained=False): super(Sketch2Color, self).__init__() class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # Build ResNet and change first conv layer to accept single-channel input self.layer1 = ResidualBlock(nc, 64, sample='down') self.layer2 = ResidualBlock(64, 128, sample='down') self.layer3 = ResidualBlock(128, 256, sample='down') self.layer4 = ResidualBlock(256, 512, sample='down') self.layer5 = ResidualBlock(512, 512, sample='down') self.layer6 = ResidualBlock(512, 512, sample='down') self.layer7 = ResidualBlock(512, 512, sample='down') def forward(self, input_image): # Pass input through ResNet-gray to extract features x0 = input_image # nc * 256 * 256 x1 = self.layer1(x0) # 64 * 128 * 128 x2 = self.layer2(x1) # 128 * 64 * 64 x3 = self.layer3(x2) # 256 * 32 * 32 x4 = self.layer4(x3) # 512 * 16 * 16 x5 = self.layer5(x4) # 512 * 8 * 8 x6 = self.layer6(x5) # 512 * 4 * 4 x7 = self.layer7(x6) # 512 * 2 * 2 return x1, x2, x3, x4, x5, x6, x7 class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() # Convolutional layers and upsampling self.noise7 = ApplyNoise(512) self.layer7_up = ResidualBlock(512, 512, sample='up') self.Att6 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer6 = ResidualBlock(1024, 512, sample=None) self.noise6 = ApplyNoise(512) self.layer6_up = ResidualBlock(512, 512, sample='up') self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer5 = ResidualBlock(1024, 512, sample=None) self.noise5 = ApplyNoise(512) self.layer5_up = ResidualBlock(512, 512, sample='up') self.Att4 = Attention_block(F_g=512, F_l=512, F_int=256) self.layer4 = ResidualBlock(1024, 512, sample=None) self.noise4 = ApplyNoise(512) self.layer4_up = ResidualBlock(512, 256, sample='up') self.Att3 = Attention_block(F_g=256, F_l=256, F_int=128) self.layer3 = ResidualBlock(512, 256, sample=None) self.noise3 = ApplyNoise(256) self.layer3_up = ResidualBlock(256, 128, sample='up') self.Att2 = Attention_block(F_g=128, F_l=128, F_int=64) self.layer2 = ResidualBlock(256, 128, sample=None) self.noise2 = ApplyNoise(128) self.layer2_up = ResidualBlock(128, 64, sample='up') self.Att1 = Attention_block(F_g=64, F_l=64, F_int=32) self.layer1 = ResidualBlock(128, 64, sample=None) self.noise1 = ApplyNoise(64) self.layer1_up = ResidualBlock(64, 32, sample='up') self.noise0 = ApplyNoise(32) self.layer0 = Conv2d_WS(32, 3, kernel_size=3, stride=1, padding=1) self.activation = nn.ReLU(inplace=True) self.tanh = nn.Tanh() def forward(self, midlevel_input): # , global_input): x1, x2, x3, x4, x5, x6, x7 = midlevel_input x = self.noise7(x7) x = self.layer7_up(x) # 512 * 4 * 4 x6 = self.Att6(g=x, x=x6) x = torch.cat((x, x6), dim=1) # 1024 * 4 * 4 x = self.layer6(x) # 512 * 4 * 4 x = self.noise6(x) x = self.layer6_up(x) # 512 * 8 * 8 x5 = self.Att5(g=x, x=x5) x = torch.cat((x, x5), dim=1) # 1024 * 8 * 8 x = self.layer5(x) # 512 * 8 * 8 x = self.noise5(x) x = self.layer5_up(x) # 512 * 16 * 16 x4 = self.Att4(g=x, x=x4) x = torch.cat((x, x4), dim=1) # 1024 * 16 * 16 x = self.layer4(x) # 512 * 16 * 16 x = self.noise4(x) x = self.layer4_up(x) # 256 * 32 * 32 x3 = self.Att3(g=x, x=x3) x = torch.cat((x, x3), dim=1) # 512 * 32 * 32 x = self.layer3(x) # 256 * 32 * 32 x = self.noise3(x) x = self.layer3_up(x) # 128 * 64 * 64 x2 = self.Att2(g=x, x=x2) x = torch.cat((x, x2), dim=1) # 256 * 64 * 64 x = self.layer2(x) # 128 * 64 * 64 x = self.noise2(x) x = self.layer2_up(x) # 64 * 128 * 128 x1 = self.Att1(g=x, x=x1) x = torch.cat((x, x1), dim=1) # 128 * 128 * 128 x = self.layer1(x) # 64 * 128 * 128 x = self.noise1(x) x = self.layer1_up(x) # 32 * 256 * 256 x = self.noise0(x) x = self.layer0(x) # 3 * 256 * 256 x = self.tanh(x) return x self.encoder = Encoder() self.decoder = Decoder() if pretrained: print('Loading pretrained {0} model...'.format('Sketch2Color'), end=' ') checkpoint = torch.load('edge2color.pth', map_location = "cuda" if torch.cuda.is_available() else "cpu") self.load_state_dict(checkpoint['netG'], strict=True) print("Done!") else: self.apply(weights_init) print('Weights of {0} model are initialized'.format('Sketch2Color')) def forward(self, inputs): encode = self.encoder(inputs) output = self.decoder(encode) return output class Discriminator(nn.Module): def __init__(self, nc=6, pretrained=False): super(Discriminator, self).__init__() self.conv1 = torch.nn.utils.spectral_norm(nn.Conv2d(nc, 64, kernel_size=4, stride=2, padding=1)) self.bn1 = nn.GroupNorm(32, 64) self.conv2 = torch.nn.utils.spectral_norm(nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)) self.bn2 = nn.GroupNorm(32, 128) self.conv3 = torch.nn.utils.spectral_norm(nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)) self.bn3 = nn.GroupNorm(32, 256) self.conv4 = torch.nn.utils.spectral_norm(nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1)) self.bn4 = nn.GroupNorm(32, 512) self.conv5 = torch.nn.utils.spectral_norm(nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)) self.activation = nn.LeakyReLU(0.2, inplace=True) self.sigmoid = nn.Sigmoid() if pretrained: pass else: self.apply(weights_init) print('Weights of {0} model are initialized'.format('Discriminator')) def forward(self, base, unknown): input = torch.cat((base, unknown), dim=1) x = self.activation(self.conv1(input)) x = self.activation(self.bn2(self.conv2(x))) x = self.activation(self.bn3(self.conv3(x))) x = self.activation(self.bn4(self.conv4(x))) x = self.sigmoid(self.conv5(x)) return x.mean((2, 3)) # To initialize model weights def weights_init(model): classname = model.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(model.weight.data, 0.0, 0.02) elif classname.find('Conv2d_WS') != -1: nn.init.normal_(model.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(model.weight.data, 1.0, 0.02) nn.init.constant_(model.bias.data, 0) elif classname.find('GroupNorm') != -1: nn.init.normal_(model.weight.data, 1.0, 0.02) nn.init.constant_(model.bias.data, 0) else: pass