File size: 6,016 Bytes
bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f 211e07c 2f0ef1f 9951815 2f0ef1f f9d0ff2 bc3d1f2 3b4f489 bc3d1f2 3b4f489 bc3d1f2 3b4f489 bc3d1f2 371909c 3b4f489 bc3d1f2 3b4f489 bc3d1f2 3b4f489 2f0ef1f bc3d1f2 3b4f489 2f0ef1f bc3d1f2 3b4f489 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 3b4f489 bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 3b4f489 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f 3b4f489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
from dotenv import load_dotenv
from supabase import create_client
from supabase.client import Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
# Check environment variables
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")
print(f"SUPABASE_URL: {SUPABASE_URL[:10]}..." if SUPABASE_URL else "SUPABASE_URL not set")
print(f"SUPABASE_SERVICE_KEY: {SUPABASE_SERVICE_KEY[:10]}..." if SUPABASE_SERVICE_KEY else "SUPABASE_SERVICE_KEY not set")
def get_supabase_client():
if not SUPABASE_URL or not SUPABASE_SERVICE_KEY:
raise ValueError("Supabase environment variables are missing.")
return create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Modulo operation."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for the query and return top results."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
"""Search the web and return top results."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for the query and return excerpts."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in docs])
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read().strip()
if not system_prompt:
print("Warning: system_prompt.txt is empty. Using default system prompt.")
system_prompt = "You are a helpful assistant."
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "groq"):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase = get_supabase_client()
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider specified")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
try:
print("Assistant received messages:")
for m in state["messages"]:
print(f"- {m.__class__.__name__}: {m.content[:100]}")
result = llm_with_tools.invoke(state["messages"])
print("LLM output message:")
if hasattr(result, "content"):
print(result.content[:500])
else:
print(result)
if not result or not getattr(result, "content", None):
print("Warning: LLM returned empty result or no content.")
return {"messages": [HumanMessage(content="Sorry, I couldn't generate an answer.")]}
return {"messages": [result]}
except Exception as e:
print(f"Error invoking LLM: {e}")
return {"messages": [HumanMessage(content="Sorry, I encountered an error during processing.")]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
msg = HumanMessage(content=f"Similar question reference:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [msg]}
graph = StateGraph(MessagesState)
graph.add_node("retriever", retriever)
graph.add_node("assistant", assistant)
graph.add_node("tools", ToolNode(tools))
graph.add_edge(START, "retriever")
graph.add_edge("retriever", "assistant")
graph.add_conditional_edges("assistant", tools_condition)
graph.add_edge("tools", "assistant")
return graph.compile()
if __name__ == "__main__":
g = build_graph("groq")
question = "When was Aquinas added to Wikipedia page on double effect?"
output = g.invoke({"messages": [HumanMessage(content=question)]})
for msg in output["messages"]:
print(f"\n[{msg.__class__.__name__}] {msg.content}\n")
|