import os from dotenv import load_dotenv from supabase import create_client from supabase.client import Client from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain.tools.retriever import create_retriever_tool load_dotenv() # Check environment variables SUPABASE_URL = os.environ.get("SUPABASE_URL") SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY") print(f"SUPABASE_URL: {SUPABASE_URL[:10]}..." if SUPABASE_URL else "SUPABASE_URL not set") print(f"SUPABASE_SERVICE_KEY: {SUPABASE_SERVICE_KEY[:10]}..." if SUPABASE_SERVICE_KEY else "SUPABASE_SERVICE_KEY not set") def get_supabase_client(): if not SUPABASE_URL or not SUPABASE_SERVICE_KEY: raise ValueError("Supabase environment variables are missing.") return create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY) @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract b from a.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide a by b.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Modulo operation.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for the query and return top results.""" docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join([doc.page_content for doc in docs]) @tool def web_search(query: str) -> str: """Search the web and return top results.""" docs = TavilySearchResults(max_results=3).invoke(query=query) return "\n\n---\n\n".join([doc.page_content for doc in docs]) @tool def arvix_search(query: str) -> str: """Search Arxiv for the query and return excerpts.""" docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n---\n\n".join([doc.page_content[:1000] for doc in docs]) tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read().strip() if not system_prompt: print("Warning: system_prompt.txt is empty. Using default system prompt.") system_prompt = "You are a helpful assistant." sys_msg = SystemMessage(content=system_prompt) def build_graph(provider: str = "groq"): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supabase = get_supabase_client() vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="documents", query_name="match_documents_langchain", ) retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(model="qwen-qwq-32b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ), ) else: raise ValueError("Invalid provider specified") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): try: print("Assistant received messages:") for m in state["messages"]: print(f"- {m.__class__.__name__}: {m.content[:100]}") result = llm_with_tools.invoke(state["messages"]) print("LLM output message:") if hasattr(result, "content"): print(result.content[:500]) else: print(result) if not result or not getattr(result, "content", None): print("Warning: LLM returned empty result or no content.") return {"messages": [HumanMessage(content="Sorry, I couldn't generate an answer.")]} return {"messages": [result]} except Exception as e: print(f"Error invoking LLM: {e}") return {"messages": [HumanMessage(content="Sorry, I encountered an error during processing.")]} def retriever(state: MessagesState): similar = vector_store.similarity_search(state["messages"][0].content) msg = HumanMessage(content=f"Similar question reference:\n\n{similar[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [msg]} graph = StateGraph(MessagesState) graph.add_node("retriever", retriever) graph.add_node("assistant", assistant) graph.add_node("tools", ToolNode(tools)) graph.add_edge(START, "retriever") graph.add_edge("retriever", "assistant") graph.add_conditional_edges("assistant", tools_condition) graph.add_edge("tools", "assistant") return graph.compile() if __name__ == "__main__": g = build_graph("groq") question = "When was Aquinas added to Wikipedia page on double effect?" output = g.invoke({"messages": [HumanMessage(content=question)]}) for msg in output["messages"]: print(f"\n[{msg.__class__.__name__}] {msg.content}\n")