Spaces:
Runtime error
Runtime error
Commit
·
13f6a8b
1
Parent(s):
2f14636
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Uvn7yZCyrMpOYNPb7K0G45tQZJVx8LyX
|
8 |
+
"""
|
9 |
+
|
10 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
11 |
+
import gradio as gr
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
16 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
18 |
+
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
max_length = 16
|
25 |
+
num_beams = 4
|
26 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
27 |
+
|
28 |
+
def predict_step(image):
|
29 |
+
# images = []
|
30 |
+
# for image_path in image_paths:
|
31 |
+
# i_image = Image.open(image_path)
|
32 |
+
# if i_image.mode != "RGB":
|
33 |
+
# i_image = i_image.convert(mode="RGB")
|
34 |
+
|
35 |
+
# images.append(i_image)
|
36 |
+
|
37 |
+
pixel_values = feature_extractor(images = image, return_tensors = "pt").pixel_values
|
38 |
+
pixel_values = pixel_values.to(device)
|
39 |
+
|
40 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
41 |
+
|
42 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
43 |
+
preds = [pred.strip() for pred in preds]
|
44 |
+
return preds
|
45 |
+
|
46 |
+
inputs = [ gr.inputs.Image(type = 'pil', label = 'Original Image')]
|
47 |
+
outputs = [ gr.outputs.Textbox(label = 'Caption')]
|
48 |
+
title = 'Image Captioning using ViT + GPT2'
|
49 |
+
description = 'ViT and GPT2 are used here to generate Image Caption for the user uploaded image.'
|
50 |
+
article = " <a href=' https://huggingface.co/sachin/vit2distilgpt2 '>Model Repository on Hugging Face Model Hub</a>"
|
51 |
+
|
52 |
+
gr.Interface(
|
53 |
+
predict_step,
|
54 |
+
inputs, outputs,
|
55 |
+
title = title,
|
56 |
+
description = description,
|
57 |
+
article = article,
|
58 |
+
theme = 'huggingface'
|
59 |
+
).launch(debug = True, enable_queue = True)
|
60 |
+
|