raoufjat commited on
Commit
b03fdce
·
verified ·
1 Parent(s): e63730f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -45
app.py CHANGED
@@ -1,45 +1,3 @@
1
- import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- from peft import PeftModel, PeftConfig
4
-
5
- # Base model and adapter model names
6
- base_model_name = "unsloth/Qwen2.5-7B-Instruct-bnb-4bit"
7
- adapter_model_name = "djmax13/qween7.5-arabic-story-teller-bnb-4bit"
8
-
9
- # Load base model
10
- base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
11
- tokenizer = AutoTokenizer.from_pretrained(base_model_name)
12
-
13
- # Load LoRA configuration
14
- config = PeftConfig.from_pretrained(adapter_model_name)
15
-
16
- # Load LoRA adapter and merge it with the base model
17
- model = PeftModel.from_pretrained(base_model, adapter_model_name)
18
- model = model.merge_and_unload() # Optional: Merge adapter weights into base model for potential speedup
19
-
20
- def generate_text(prompt):
21
- input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) # Move input to model's device
22
-
23
- # Generate text (you might need to adjust generation parameters)
24
- output = model.generate(
25
- input_ids,
26
- max_length=150, # Adjust as needed
27
- num_return_sequences=1,
28
- no_repeat_ngram_size=2,
29
- top_k=50,
30
- top_p=0.95,
31
- temperature=0.7,
32
- )
33
-
34
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
35
- return generated_text
36
-
37
- iface = gr.Interface(
38
- fn=generate_text,
39
- inputs=gr.Textbox(lines=5, placeholder="Enter your story prompt here..."),
40
- outputs=gr.Textbox(),
41
- title="Arabic Story Teller",
42
- description="A Qwen2.5-7B model finetuned for Arabic story generation using LoRA.",
43
- )
44
-
45
- iface.launch()
 
1
+ # Load model directly
2
+ from transformers import AutoModel
3
+ model = AutoModel.from_pretrained("GhadyIbra250/qwen_arabic_stories")