raphaelmerx commited on
Commit
b912ddb
·
1 Parent(s): d690b2a

Add progress bar

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -14,7 +14,7 @@ model_id = "facebook/mms-1b-all"
14
  processor = AutoProcessor.from_pretrained(model_id)
15
  model = Wav2Vec2ForCTC.from_pretrained(model_id)
16
 
17
- def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (eng)"):
18
  if audio_file_mic:
19
  audio_file = audio_file_mic
20
  elif audio_file_upload:
@@ -22,10 +22,12 @@ def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (e
22
  else:
23
  return "Please upload an audio file or record one"
24
 
 
 
25
  # Make sure audio is 16kHz
26
  speech, sample_rate = librosa.load(audio_file)
27
  if sample_rate != 16000:
28
- print('resampling')
29
  speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
30
 
31
  # Cut speech into chunks
@@ -38,7 +40,8 @@ def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (e
38
  model.load_adapter(language_code)
39
 
40
  transcriptions = []
41
- for chunk in chunks:
 
42
  inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
43
 
44
  with torch.no_grad():
 
14
  processor = AutoProcessor.from_pretrained(model_id)
15
  model = Wav2Vec2ForCTC.from_pretrained(model_id)
16
 
17
+ def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (eng)", progress=gr.Progress()):
18
  if audio_file_mic:
19
  audio_file = audio_file_mic
20
  elif audio_file_upload:
 
22
  else:
23
  return "Please upload an audio file or record one"
24
 
25
+ progress(0, desc="Starting")
26
+
27
  # Make sure audio is 16kHz
28
  speech, sample_rate = librosa.load(audio_file)
29
  if sample_rate != 16000:
30
+ progress(1, desc="Resampling")
31
  speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000)
32
 
33
  # Cut speech into chunks
 
40
  model.load_adapter(language_code)
41
 
42
  transcriptions = []
43
+ progress(2, desc="Transcribing")
44
+ for chunk in progress.tqdm(chunks, desc="Transcribing"):
45
  inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt")
46
 
47
  with torch.no_grad():