import gradio as gr from transformers import Wav2Vec2ForCTC, AutoProcessor import torch import numpy as np import librosa import json with open('ISO_codes.json', 'r') as file: iso_codes = json.load(file) languages = list(iso_codes.keys()) model_id = "facebook/mms-1b-all" processor = AutoProcessor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (eng)", progress=gr.Progress()): if audio_file_mic: audio_file = audio_file_mic elif audio_file_upload: audio_file = audio_file_upload else: return "Please upload an audio file or record one" progress(0, desc="Starting") # Make sure audio is 16kHz speech, sample_rate = librosa.load(audio_file) if sample_rate != 16000: progress(1, desc="Resampling") speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) # Cut speech into chunks chunk_size = 30 * 16000 # 30s * 16000Hz chunks = np.split(speech, np.arange(chunk_size, len(speech), chunk_size)) # load model adapter for this language language_code = iso_codes[language] processor.tokenizer.set_target_lang(language_code) model.load_adapter(language_code) transcriptions = [] progress(2, desc="Transcribing") for chunk in progress.tqdm(chunks, desc="Transcribing"): inputs = processor(chunk, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) transcriptions.append(transcription) transcription = ' '.join(transcriptions) return transcription examples = [ ["balinese.mp3", None, "Bali (ban)"], ["madura.mp3", None, "Madura (mad)"], ["toba_batak.mp3", None, "Batak Toba (bbc)"], ["minangkabau.mp3", None, "Minangkabau (min)"], ] description = '''Automatic Speech Recognition with [MMS](https://ai.facebook.com/blog/multilingual-model-speech-recognition/) (Massively Multilingual Speech) by Meta.''' demo = gr.Interface( transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", label="Record Audio"), gr.Audio(source="upload", type="filepath", label="Upload Audio"), gr.Dropdown(choices=languages, label="Language", value="English (eng)") ], outputs=gr.Textbox(label="Transcription"), # examples=examples, description=description ) if __name__ == "__main__": demo.queue(concurrency_count=1).launch()