Commit
·
9579d2d
0
Parent(s):
Initial clean commit
Browse files- .gitattributes +36 -0
- README.md +12 -0
- add_questions.ipynb +135 -0
- app.py +51 -0
- data/spatial_aggregation/se9pgd1q.json +1 -0
- data/spatial_aggregation/se9pgd1q.py +8 -0
- data/temporal_aggregation/jio8bxfb.json +1 -0
- data/temporal_aggregation/jio8bxfb.py +6 -0
- data/temporal_aggregation/tebhtf88.json +1 -0
- data/temporal_aggregation/tebhtf88.py +6 -0
- raw_data/main_data.csv +3 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
raw_data/main_data.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: QandA For VayuBuddy
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.42.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
add_questions.ipynb
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 6,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import json\n",
|
10 |
+
"import inspect\n",
|
11 |
+
"import subprocess\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"import tempfile\n",
|
14 |
+
"from glob import glob"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {},
|
20 |
+
"source": [
|
21 |
+
"# Don't change this part\n",
|
22 |
+
"\n",
|
23 |
+
"You are an air quality expert Python code generator. You need to act on `data`, a pandas DataFrame with air quality data from India to answer questions about air quality. Data frequency is daily. The data has the following columns and data types: {'Timestamp': dtype('<M8[ns]'), 'station': dtype('O'), 'PM2.5': dtype('float64'), 'PM10': dtype('float64'), 'address': dtype('O'), 'city': dtype('O'), 'latitude': dtype('float64'), 'longitude': dtype('float64'), 'state': dtype('O')}."
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"# Work on this part"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 12,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [
|
38 |
+
{
|
39 |
+
"name": "stdout",
|
40 |
+
"output_type": "stream",
|
41 |
+
"text": [
|
42 |
+
"0.02\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"category = \"temporal_aggregation\"\n",
|
48 |
+
"question = \"What is the minimum PM2.5 value recorded ever?\"\n",
|
49 |
+
"\n",
|
50 |
+
"def true_code():\n",
|
51 |
+
" import pandas as pd\n",
|
52 |
+
" main_data = pd.read_csv(\"raw_data/main_data.csv\")\n",
|
53 |
+
" print(main_data[\"PM2.5\"].min())\n",
|
54 |
+
" \n",
|
55 |
+
"code = inspect.getsource(true_code) + \"\\ntrue_code()\"\n",
|
56 |
+
"\n",
|
57 |
+
"output = subprocess.check_output([\"python3\", \"-c\", code]).decode(\"utf-8\").strip()\n",
|
58 |
+
"print(output)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "markdown",
|
63 |
+
"metadata": {},
|
64 |
+
"source": [
|
65 |
+
"# Don't change this part"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 13,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [
|
73 |
+
{
|
74 |
+
"name": "stdout",
|
75 |
+
"output_type": "stream",
|
76 |
+
"text": [
|
77 |
+
"Saving to data/temporal_aggregation/jio8bxfb.json and data/temporal_aggregation/jio8bxfb.py\n"
|
78 |
+
]
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"source": [
|
82 |
+
"existing_questions = []\n",
|
83 |
+
"existing_files = []\n",
|
84 |
+
"for file in glob(f\"data/*/*.json\"):\n",
|
85 |
+
" with open(file, \"r\") as f:\n",
|
86 |
+
" data = json.load(f)\n",
|
87 |
+
" existing_questions.append(data[\"question\"])\n",
|
88 |
+
" existing_files.append(file)\n",
|
89 |
+
" \n",
|
90 |
+
"if question in existing_questions:\n",
|
91 |
+
" index = existing_questions.index(question)\n",
|
92 |
+
" raise ValueError(f\"Question already exists in {existing_files[index]}\")\n",
|
93 |
+
"\n",
|
94 |
+
"save_name = tempfile.mktemp(suffix='.json', prefix=\"\", dir=f\"data/{category}\")\n",
|
95 |
+
"save_code = save_name.replace(\".json\", \".py\")\n",
|
96 |
+
"print(f\"Saving to {save_name} and {save_code}\")\n",
|
97 |
+
"\n",
|
98 |
+
"with open(save_name, \"w\") as f:\n",
|
99 |
+
" json_data = {\"question\": question}\n",
|
100 |
+
" json.dump(json_data, f)\n",
|
101 |
+
" \n",
|
102 |
+
"with open(save_code, \"w\") as f:\n",
|
103 |
+
" f.write(code)"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": []
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"metadata": {
|
115 |
+
"kernelspec": {
|
116 |
+
"display_name": "zeel_py310",
|
117 |
+
"language": "python",
|
118 |
+
"name": "python3"
|
119 |
+
},
|
120 |
+
"language_info": {
|
121 |
+
"codemirror_mode": {
|
122 |
+
"name": "ipython",
|
123 |
+
"version": 3
|
124 |
+
},
|
125 |
+
"file_extension": ".py",
|
126 |
+
"mimetype": "text/x-python",
|
127 |
+
"name": "python",
|
128 |
+
"nbconvert_exporter": "python",
|
129 |
+
"pygments_lexer": "ipython3",
|
130 |
+
"version": "3.10.15"
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"nbformat": 4,
|
134 |
+
"nbformat_minor": 2
|
135 |
+
}
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import subprocess
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
from glob import glob
|
6 |
+
|
7 |
+
mode = st.sidebar.radio("", ["All questions", "Inspect"])
|
8 |
+
|
9 |
+
|
10 |
+
def read_question(file):
|
11 |
+
with open(file, "r") as f:
|
12 |
+
data = json.load(f)
|
13 |
+
return data["question"]
|
14 |
+
|
15 |
+
|
16 |
+
data = pd.DataFrame()
|
17 |
+
data["file"] = glob("data/*/*.json")
|
18 |
+
data["category"] = data["file"].apply(lambda x: " ".join(x.split("/")[1].split("_")).title())
|
19 |
+
data["question"] = data["file"].apply(read_question)
|
20 |
+
|
21 |
+
if mode == "All questions":
|
22 |
+
grouped_data = data.groupby("category").agg(list).reset_index()
|
23 |
+
for i, row in grouped_data.iterrows():
|
24 |
+
st.write(f"## {row['category']}")
|
25 |
+
for i, question in enumerate(row["question"]):
|
26 |
+
st.write(f"{i+1}. {question} ({row['file'][i]})")
|
27 |
+
|
28 |
+
elif mode == "Inspect":
|
29 |
+
category = st.selectbox("Category", data["category"].unique())
|
30 |
+
question = st.selectbox("Question", data[data["category"] == category]["question"])
|
31 |
+
|
32 |
+
row = data[(data["category"] == category) & (data["question"] == question)].iloc[0]
|
33 |
+
with open(row["file"], "r") as f:
|
34 |
+
row_data = json.load(f)
|
35 |
+
with open(row["file"].replace(".json", ".py"), "r") as f:
|
36 |
+
row_code = f.read()
|
37 |
+
|
38 |
+
st.write(
|
39 |
+
f"""## Code
|
40 |
+
```python
|
41 |
+
{row_code}
|
42 |
+
```
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
|
46 |
+
execute = st.button("Execute")
|
47 |
+
if execute:
|
48 |
+
with st.status("", expanded=True):
|
49 |
+
output = subprocess.check_output(["python3", row["file"].replace(".json", ".py")])
|
50 |
+
print(output)
|
51 |
+
st.write(f"{output.decode('utf-8').strip()}")
|
data/spatial_aggregation/se9pgd1q.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"question": "Which city has the highest average PM2.5 in December 2023?"}
|
data/spatial_aggregation/se9pgd1q.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def true_code():
|
2 |
+
import pandas as pd
|
3 |
+
main_data = pd.read_csv("raw_data/main_data.csv")
|
4 |
+
main_data["Timestamp"] = pd.to_datetime(main_data["Timestamp"])
|
5 |
+
answer = main_data[(main_data["Timestamp"].dt.year == 2023) & (main_data["Timestamp"].dt.month == 12)].groupby("city")["PM2.5"].mean().idxmax()
|
6 |
+
print(answer)
|
7 |
+
|
8 |
+
true_code()
|
data/temporal_aggregation/jio8bxfb.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"question": "What is the minimum PM2.5 value recorded ever?"}
|
data/temporal_aggregation/jio8bxfb.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def true_code():
|
2 |
+
import pandas as pd
|
3 |
+
main_data = pd.read_csv("raw_data/main_data.csv")
|
4 |
+
print(main_data["PM2.5"].min())
|
5 |
+
|
6 |
+
true_code()
|
data/temporal_aggregation/tebhtf88.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"question": "What is the maximum PM2.5 value recorded ever?"}
|
data/temporal_aggregation/tebhtf88.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def true_code():
|
2 |
+
import pandas as pd
|
3 |
+
main_data = pd.read_csv("raw_data/main_data.csv")
|
4 |
+
print(main_data["PM2.5"].max())
|
5 |
+
|
6 |
+
true_code()
|
raw_data/main_data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77ea5aff6c41f6e8e5562a75ec4ac97f498debd706d3a047e1b57a9d8bd42be1
|
3 |
+
size 266893056
|