File size: 15,917 Bytes
13d7bed
 
 
a27e6f2
13d7bed
a27e6f2
13d7bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ce6ee
e674f2c
4c9f62d
e674f2c
 
 
 
 
 
 
 
 
 
 
f8ce6ee
e674f2c
 
 
 
 
 
 
4c9f62d
e674f2c
13d7bed
e674f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f43f91
a27e6f2
 
f8ce6ee
13d7bed
f8ce6ee
 
 
8dbbc99
 
 
 
 
 
e651be7
8dbbc99
 
9ebaa8a
8dbbc99
e651be7
 
 
8dbbc99
 
 
 
 
 
 
 
 
f8ce6ee
 
3da6b4f
a27e6f2
8dbbc99
f8ce6ee
13d7bed
a27e6f2
f8ce6ee
 
 
13d7bed
 
 
 
a27e6f2
 
755e5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a27e6f2
 
 
e1b87b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425fe6
 
e1b87b0
 
e2319e5
 
 
 
e1b87b0
 
 
 
 
 
 
 
 
c9a4ecf
e1b87b0
c9a4ecf
 
 
e1b87b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a4ecf
e651be7
 
 
 
 
 
 
e1b87b0
 
 
 
 
 
 
c9a4ecf
 
 
 
e1b87b0
 
 
 
 
 
 
 
 
c9a4ecf
e1b87b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d7bed
 
 
 
 
e674f2c
 
13d7bed
 
 
 
4c9f62d
fcba7cb
e674f2c
4c9f62d
e674f2c
 
 
 
 
4c9f62d
 
 
fcba7cb
4c9f62d
 
 
e674f2c
 
fcba7cb
e674f2c
fcba7cb
4c9f62d
 
 
b50d5bd
f8ce6ee
e674f2c
a27e6f2
e674f2c
4c9f62d
 
 
 
 
 
 
 
13d7bed
e674f2c
 
9ebaa8a
4c9f62d
e674f2c
4c9f62d
 
 
 
 
e651be7
 
 
 
4c9f62d
 
e674f2c
4c9f62d
13d7bed
b7b543a
13d7bed
 
4c9f62d
 
 
e674f2c
4c9f62d
a27e6f2
8dbbc99
6ab9894
 
9e3e4c1
 
 
 
7e76b2e
9e3e4c1
ee56fe5
 
9e3e4c1
 
ee56fe5
 
3aaf166
55d9837
 
 
 
 
3aaf166
6ab9894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aaf166
 
 
69325b3
 
 
 
3aaf166
 
6ab9894
 
13d7bed
55d9837
 
0421b66
13d7bed
6ab9894
8dbbc99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
                          AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')


def encode_image_to_base64(image):
    print(f"Encode image type: {type(image)}")  # Debug print
    
    try:
        # If image is a tuple (as sometimes provided by Gradio), take the first element
        if isinstance(image, tuple):
            print(f"Image is tuple with length: {len(image)}")  # Debug print
            if len(image) > 0 and image[0] is not None:
                if isinstance(image[0], np.ndarray):
                    image = Image.fromarray(image[0])
                else:
                    image = image[0]
            else:
                raise ValueError("Invalid image tuple provided")

        # If image is a numpy array, convert to PIL Image
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        
        # If image is a path string, open it
        elif isinstance(image, str):
            image = Image.open(image)

        print(f"Image type after conversion: {type(image)}")  # Debug print

        # Ensure image is in PIL Image format
        if not isinstance(image, Image.Image):
            raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}")

        # Convert image to RGB if it's in RGBA mode
        if image.mode == 'RGBA':
            image = image.convert('RGB')

        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')
    except Exception as e:
        print(f"Encode error details: {str(e)}")  # Debug print
        raise
        

def analyze_image(image):
    client = OpenAI(api_key=OPENAI_API_KEY)
    base64_image = encode_image_to_base64(image)

    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": """Your task is to determine if the image is surprising or not surprising.    
                    if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.    
                    Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
                    Additionally, write one sentence about what would be expected in this scene, and one sentence about what is unexpected.
                    Provide the response as a JSON with the following structure:    
                    {
                        "label": "[surprising OR not surprising]",
                        "element": "[element]",
                        "rating": [1-5],
                        "expected": "[one sentence about what would be expected]",
                        "unexpected": "[one sentence about what is unexpected]"
                    }"""
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"
                    }
                }
            ]
        }
    ]

    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=messages,
        max_tokens=100,
        temperature=0.1,
        response_format={
            "type": "json_object"
        }
    )

    return response.choices[0].message.content


def show_mask(mask, ax, random_color=False):
    try:
        # Debug print to understand mask type
        print(f"show_mask input type: {type(mask)}")
        
        # Convert mask if it's a tuple
        if isinstance(mask, tuple):
            if len(mask) > 0 and mask[0] is not None:
                mask = mask[0]
            else:
                raise ValueError("Invalid mask tuple")

        # Convert torch tensor to numpy if needed
        if torch.is_tensor(mask):
            mask = mask.cpu().numpy()
            
        # Handle 4D tensor/array case
        if len(mask.shape) == 4:
            mask = mask[0, 0]
        # Handle 3D tensor/array case
        elif len(mask.shape) == 3:
            mask = mask[0]

        if random_color:
            color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
        else:
            color = np.array([1.0, 0.0, 0.0, 0.5])

        mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
        mask_image[mask > 0] = color

        ax.imshow(mask_image)
        
    except Exception as e:
        print(f"show_mask error: {str(e)}")
        print(f"mask shape: {getattr(mask, 'shape', 'no shape')}")
        raise


def process_image_detection(image, target_label, surprise_rating):
   try:
       # Handle different image input types
       if isinstance(image, tuple):
           if len(image) > 0 and image[0] is not None:
               if isinstance(image[0], np.ndarray):
                   image = Image.fromarray(image[0])
               else:
                   image = image[0]
           else:
               raise ValueError("Invalid image tuple provided")
       elif isinstance(image, np.ndarray):
           image = Image.fromarray(image)
       elif isinstance(image, str):
           image = Image.open(image)

       # Ensure image is in PIL Image format
       if not isinstance(image, Image.Image):
           raise ValueError(f"Input must be a PIL Image, got {type(image)}")

       # Ensure image is in RGB mode
       if image.mode != 'RGB':
           image = image.convert('RGB')

       device = "cuda" if torch.cuda.is_available() else "cpu"
       print(f"Using device: {device}")

       # Get original image DPI and size
       original_dpi = image.info.get('dpi', (72, 72))
       original_size = image.size
       print(f"Image size: {original_size}")

       # Calculate relative font size
       base_fontsize = min(original_size) / 80

       print("Loading models...")
       owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
       owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
       sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-large")
       sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-large").to(device)

       print("Running object detection...")
       inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
       with torch.no_grad():
           outputs = owlv2_model(**inputs)

       target_sizes = torch.tensor([image.size[::-1]]).to(device)
       results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]

       # Use original image dimensions for figure size
       dpi = 300
       width, height = image.size
       figsize = (width / dpi, height / dpi)
       
       fig = plt.figure(figsize=figsize, dpi=dpi)
       ax = plt.Axes(fig, [0., 0., 1., 1.])
       fig.add_axes(ax)
       ax.imshow(image)

       scores = results["scores"]
       if len(scores) > 0:
           max_score_idx = scores.argmax().item()
           max_score = scores[max_score_idx].item()

           if max_score > 0.2:
               print("Processing detection results...")
               box = results["boxes"][max_score_idx].cpu().numpy()

               print("Running SAM model...")
               # Convert image to numpy array if needed for SAM
               if isinstance(image, Image.Image):
                   image_np = np.array(image)
               else:
                   image_np = image

               sam_inputs = sam_processor(
                   image_np,
                   input_boxes=[[[box[0], box[1], box[2], box[3]]]],
                   return_tensors="pt"
               ).to(device)

               with torch.no_grad():
                   sam_outputs = sam_model(**sam_inputs)

               masks = sam_processor.image_processor.post_process_masks(
                   sam_outputs.pred_masks.cpu(),
                   sam_inputs["original_sizes"].cpu(),
                   sam_inputs["reshaped_input_sizes"].cpu()
               )

               print(f"Mask type: {type(masks)}, Mask shape: {len(masks)}")
               mask = masks[0]
               if isinstance(mask, torch.Tensor):
                   mask = mask.numpy()
               
               show_mask(mask, ax=ax)

               rect = patches.Rectangle(
                   (box[0], box[1]),
                   box[2] - box[0],
                   box[3] - box[1],
                   linewidth=max(2, min(original_size) / 500),
                   edgecolor='red',
                   facecolor='none'
               )
               ax.add_patch(rect)

               # Only add the probability score
               #plt.text(
               #    box[0], box[1] - base_fontsize,
               #    f'{max_score:.2f}',
               #    color='red',
               #    fontsize=base_fontsize,
               #    fontweight='bold'
               #)

       plt.axis('off')

       print("Saving final image...")
       try:
           buf = io.BytesIO()
           fig.savefig(buf, 
                     format='png',
                     dpi=dpi,
                     bbox_inches='tight',
                     pad_inches=0)
           buf.seek(0)
           
           # Open as PIL Image
           output_image = Image.open(buf)
           
           # Convert to RGB if needed
           if output_image.mode != 'RGB':
               output_image = output_image.convert('RGB')
           
           # Save to final buffer
           final_buf = io.BytesIO()
           output_image.save(final_buf, format='PNG', dpi=original_dpi)
           final_buf.seek(0)
           
           plt.close(fig)
           buf.close()
           
           return final_buf

       except Exception as e:
           print(f"Save error details: {str(e)}")
           raise

   except Exception as e:
       print(f"Process image detection error: {str(e)}")
       print(f"Error occurred at line {e.__traceback__.tb_lineno}")
       raise

def process_and_analyze(image):
    if image is None:
        return None, "Please upload an image first."

    print(f"Initial image type: {type(image)}")  # Debug print

    if OPENAI_API_KEY is None:
        return None, "OpenAI API key not found in environment variables."

    try:
        # Convert the image to PIL format if needed
        if isinstance(image, tuple):
            print(f"Image is tuple, length: {len(image)}")  # Debug print
            if len(image) > 0 and image[0] is not None:
                if isinstance(image[0], np.ndarray):
                    image = Image.fromarray(image[0])
                else:
                    print(f"First element type: {type(image[0])}")  # Debug print
                    image = image[0]
            else:
                return None, "Invalid image format provided"
        elif isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif isinstance(image, str):
            image = Image.open(image)
        
        print(f"Image type after conversion: {type(image)}")  # Debug print

        if not isinstance(image, Image.Image):
            return None, f"Invalid image format: {type(image)}"

        # Ensure image is in RGB mode
        if image.mode != 'RGB':
            image = image.convert('RGB')

        # Analyze image
        print("Starting GPT analysis...")  # Debug print
        gpt_response = analyze_image(image)
        print(f"GPT response: {gpt_response}")  # Debug print
        
        try:
            response_data = json.loads(gpt_response)
        except json.JSONDecodeError:
            return None, "Error: Invalid response format from GPT"

        if not all(key in response_data for key in ["label", "element", "rating"]):
            return None, "Error: Missing required fields in analysis response"

        print(f"Response data: {response_data}")  # Debug print

        if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
            try:
                print("Starting image detection...")  # Debug print
                result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
                result_image = Image.open(result_buf)
                analysis_text = (
                    f"Label: {response_data['label']}\n"
                    f"Element: {response_data['element']}\n"
                    f"Rating: {response_data['rating']}/5\n"
                    f"Expected: {response_data['expected']}\n"
                    f"Unexpected: {response_data['unexpected']}"
            )
                return result_image, analysis_text
            except Exception as detection_error:
                print(f"Detection error details: {str(detection_error)}")  # Debug print
                return None, f"Error in image detection processing: {str(detection_error)}"
        else:
            return image, "Not Surprising"

    except Exception as e:
        error_type = type(e).__name__
        error_msg = str(e)
        detailed_error = f"Error ({error_type}): {error_msg}"
        print(detailed_error)  # Debug print
        return None, f"Error processing image: {error_msg}"

# Create Gradio interface
def create_interface():
    with gr.Blocks() as demo:
        with gr.Row():  # Horizontal layout for the left side alignment
            with gr.Column(scale=1):  # Adjust the scale for the left section
                gr.Image(
                    value="appendix/icon.webp", 
                    width=65, 
                    interactive=False, 
                    show_label=False,
                    show_download_button=False,
                    elem_id="icon"
                )
                with gr.Column(scale=3):
                    gr.Markdown("## Image Anomaly-Surprise Detection")

        gr.Markdown(
            "This project offers a tool that identifies surprising elements in images, "
            "pinpointing what violates our expectations. It analyzes images for unexpected objects, "
            "locations, social scenarios, settings, and roles."
        )
 
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Upload Image")
                analyze_btn = gr.Button("Analyze Image")

            with gr.Column():
                output_image = gr.Image(label="Processed Image")
                output_text = gr.Textbox(label="Analysis Results")

        analyze_btn.click(
            fn=process_and_analyze,
            inputs=[input_image],
            outputs=[output_image, output_text]
        )

           
        # Display example images in a row using Gradio Image components
        with gr.Row():
            gr.Image(value="appendix/gradio_example.png", width=250, show_label=False, interactive=False, show_download_button=False)
            gr.Image(value="appendix/gradio_example2.png", width=250, show_label=False, interactive=False, show_download_button=False)
            gr.Image(value="appendix/gradio_example3.png", width=250, show_label=False, interactive=False, show_download_button=False)
            gr.Image(value="appendix/gradio_example4.png", width=250, show_label=False, interactive=False, show_download_button=False)

    
    return demo





if __name__ == "__main__":
    demo = create_interface()
    demo.launch()