rohithk-03
update return msg
bcc0393
from flask import Flask, request, jsonify, render_template
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import Visualizer, ColorMode
import numpy as np
from PIL import Image
import io
import os
import requests
import gdown
from skimage import io as skio
from torchvision.ops import box_iou
import torch
# Initialize Flask app
app = Flask(__name__)
cfg = None
# Google Drive file URL
# Replace 'your-file-id' with the actual file ID from Google Drive
GDRIVE_MODEL_URL = "https://drive.google.com/uc?id=1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
LOCAL_MODEL_PATH = "model_final.pth"
def download_file_from_google_drive(id, destination):
gdown.download(GDRIVE_MODEL_URL, LOCAL_MODEL_PATH, quiet=False)
file_id = "1fzKneepaRt_--dzamTcDBM-9d3_dLX7z"
destination = "checkpoint32.pth"
download_file_from_google_drive(file_id, destination)
# Download model from Google Drive if not already present locally
def download_model():
if not os.path.exists(LOCAL_MODEL_PATH):
response = requests.get(GDRIVE_MODEL_URL, stream=True)
if response.status_code == 200:
with open(LOCAL_MODEL_PATH, "wb") as f:
f.write(response.content)
else:
raise Exception(
f"Failed to download model from Google Drive: {response.status_code}"
)
# Configuration and model setup
def setup_model(model_path):
global cfg
cfg = get_cfg()
cfg.merge_from_file("config.yaml") # Update with the config file path
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu" # Use "cuda" for GPU
return DefaultPredictor(cfg)
# Ensure model is available
predictor = setup_model(LOCAL_MODEL_PATH)
# Define expected parts and costs
expected_parts = ["headlamp", "rear_bumper", "door", "hood", "front_bumper"]
cost_dict = {
"headlamp": 300,
"rear_bumper": 250,
"door": 200,
"hood": 220,
"front_bumper": 250,
"other": 150,
}
@app.route("/")
def home():
return render_template("index.html")
@app.route("/upload", methods=["POST"])
def upload():
if "file" not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files["file"]
if file.filename == "":
return jsonify({"error": "No file selected"}), 400
# Load image
image = skio.imread(file)
image_np = image
# Run model prediction
outputs = predictor(image_np)
instances = outputs["instances"].to("cpu")
class_names = MetadataCatalog.get(cfg.DATASETS.TEST[0]).thing_classes
# Extract bounding boxes and class IDs
boxes = instances.pred_boxes.tensor.numpy()
class_ids = instances.pred_classes.numpy()
# Filter overlapping boxes using IoU
iou_threshold = 0.8
keep_indices = []
merged_boxes = set()
for i in range(len(boxes)):
if i in merged_boxes:
continue
keep_indices.append(i)
for j in range(i + 1, len(boxes)):
if j in merged_boxes:
continue
iou = box_iou(
torch.tensor(boxes[i]).unsqueeze(
0), torch.tensor(boxes[j]).unsqueeze(0)
).item()
if iou > iou_threshold:
merged_boxes.add(j)
# Calculate total cost based on non-overlapping boxes
total_cost = 0
damage_details = []
for idx in keep_indices:
class_id = class_ids[idx]
damaged_part = (
class_names[class_id] if class_id < len(class_names) else "unknown"
)
if damaged_part not in expected_parts:
damaged_part = "other"
repair_cost = cost_dict.get(damaged_part, cost_dict["other"])
total_cost += repair_cost
damage_details.append({"part": damaged_part, "cost_usd": repair_cost})
response = {"damages": damage_details, "total_cost": total_cost}
return jsonify(response)
@app.route("/fetch-image", methods=["POST"])
def fetchImage():
file = None
if "url" in request.form:
url = request.form["url"]
response = requests.get(url)
file = io.BytesIO(response.content)
elif "file" in request.files:
file = request.files["file"]
# Load image
image = skio.imread(file)
image_np = image
return jsonify(response)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)